4 resultados para Audiovisual content production
em eResearch Archive - Queensland Department of Agriculture
Resumo:
A series of 3 experiments were conducted to evaluate the use of microalgae as supplements for ruminants consuming low-CP tropical grasses. In Exp. 1, the chemical composition and in vitro protein degradability of 9 algae species and 4 protein supplements were determined. In Exp. 2, rumen function and microbial protein (MCP) production were determined in Bos indicus steers fed speargrass hay alone or supplemented with Spirulina platensis, Chlorella pyrenoidosa, Dunaliella salina, or cottonseed meal (CSM). In Exp. 3, DMI and ADG were determined in B. indicus steers fed speargrass hay alone or supplemented with increasing amounts of NPN (urea combined with ammonia sulfate), CSM, or S. platensis. In Exp. 1, the CP content of S. platensis and C. pyrenoidosa (675 and 580 g/kg DM) was highest among the algae species and higher than the other protein supplements evaluated, and Schizochytrium sp. had the highest crude lipid (CL) content (198 g/kg DM). In Exp. 2, S. platensis supplementation increased speargrass hay intake, the efficiency of MCP production, the fractional outflow rate of digesta from the rumen, the concentration of NH3N, and the molar proportion of branched-chain fatty acids in the rumen fluid of steers above all other treatments. Dunaliella salina acceptance by steers was low and this resulted in no significant difference to unsupplemented steers for all parameters measured for this algae supplement. In Exp. 3, ADG linearly increased with increasing supplementary N intake from both S. platensis and NPN, with no difference between the 2 supplements. In contrast, ADG quadratically increased with increasing supplementary N intake from CSM. It was concluded that S. platensis and C. pyrenoidosa may potentially be used as protein sources for cattle grazing low-CP pastures.
Resumo:
A validation study examined the accuracy of a purpose-built single photon absorptiometry (SPA) instrument for making on-farm in vivo measurements of bone mineral density (BMD) in tail bones of cattle. In vivo measurements were made at the proximal end of the ninth coccygeal vertebra (Cy9) in steers of two age groups (each n = 10) in adequate or low phosphorus status. The tails of the steers were then resected and the BMD of the Cy9 bone was measured in the laboratory with SPA on the resected tails and then with established laboratory procedures on defleshed bone. Specific gravity and ash density were measured on the isolated Cy9 vertebrae and on 5-mm2 dorso-ventral cores of bone cut from each defleshed Cy9. Calculated BMD determined by SPA required a measure of tail bone thickness and this was estimated as a fraction of total tail thickness. Actual tail bone thickness was also measured on the isolated Cy9 vertebrae. The accuracy of measurement of BMD by SPA was evaluated by comparison with the ash density of the bone cores measured in the laboratory. In vivo SPA measurements of BMD were closely correlated with laboratory measurements of core ash density (r = 0.92). Ash density and specific gravity of cores, and all SPA measures of BMD, were affected by phosphorus status of the steers, but the effect of steer age was only significant (P < 0.05) for steers in adequate phosphorus status. The accuracy of SPA to determine BMD of tail bone may be improved by reducing error associated with in vivo estimation of tail bone thickness, and also by adjusting for displacement of soft tissue by bone mineral. In conclusion a purpose-built SPA instrument could be used to make on-farm sequential non-invasive in vivo measurements of the BMD of tailbone in cattle with accuracy acceptable for many animal studies.
Resumo:
Postharvest disease management is one of the key challenges in commercial mango supply chains. Comprehensive investigations were made regarding the impact of geographic locality on postharvest disease development and other quality parameters in 'Sindhri' and 'Samar Bahisht (S.B.) Chaunsa' mangoes under ambient (33±1°C; 55-60% RH) and low temperature storage/simulated shipping (12±1°C; 80- 85% RH) conditions (28 or 35 days storage for 'Sindhri' and 21 or 28 days for 'S.B. Chaunsa'). Physiologically mature (days from fruit set were 95-100 and 110-115 for 'Sindhri' and 'S.B Chaunsa', respectively) 'Sindhri' and 'S.B. Chaunsa' fruits were harvested from five geographic localities and subjected to ambient and simulated shipping conditions. Under ambient conditions, no disease incidence was observed till fruit eating stage in 'Sindhri'. However, in 'S.B. Chaunsa', significant variation in different localities was observed with respect to disease incidence. Maximum and at par disease was exhibited by the fruit collected from district Vehari and Khanewal in 'S.B. Chaunsa'. Under simulated shipping conditions, disease development varied significantly with respect to different locations and storage durations. In 'Sindhri', fruit of M. Garh, while, 'S.B. Chaunsa' fruit of districts R.Y. Khan, M. Garh and Khanewal showed higher disease incidence. Fruit peel colour development was significantly reduced as storage days increased. Fruit firmness, skin shriveling, fresh weight loss, dry matter, biochemical and organoleptic attributes also varied significantly among the fruit sourced from different orchards of different localities. Analysis of N contents in leaves and fruit peel revealed that N contents of leaf and peel were positively correlated with disease severity in mango. Botryodiplodia spp., Phomopsis mangiferae, Alternaria alternata, Colletotrichum gloeosporioides were the pathogens isolated from fruits of all locations; however, the prevalence frequency varied with the geographic localities. In conclusion, the production locality, cultivar and nutrition (nitrogen content of fruit peel) had significant effect on fruit quality out-turn at ripe stage in terms of disease development so area specific disease management system needs to be implemented for better quality at retail.
Resumo:
High-throughput techniques are necessary to efficiently screen potential lignocellulosic feedstocks for the production of renewable fuels, chemicals, and bio-based materials, thereby reducing experimental time and expense while supplanting tedious, destructive methods. The ratio of lignin syringyl (S) to guaiacyl (G) monomers has been routinely quantified as a way to probe biomass recalcitrance. Mid-infrared and Raman spectroscopy have been demonstrated to produce robust partial least squares models for the prediction of lignin S/G ratios in a diverse group of Acacia and eucalypt trees. The most accurate Raman model has now been used to predict the S/G ratio from 269 unknown Acacia and eucalypt feedstocks. This study demonstrates the application of a partial least squares model composed of Raman spectral data and lignin S/G ratios measured using pyrolysis/molecular beam mass spectrometry (pyMBMS) for the prediction of S/G ratios in an unknown data set. The predicted S/G ratios calculated by the model were averaged according to plant species, and the means were not found to differ from the pyMBMS ratios when evaluating the mean values of each method within the 95 % confidence interval. Pairwise comparisons within each data set were employed to assess statistical differences between each biomass species. While some pairwise appraisals failed to differentiate between species, Acacias, in both data sets, clearly display significant differences in their S/G composition which distinguish them from eucalypts. This research shows the power of using Raman spectroscopy to supplant tedious, destructive methods for the evaluation of the lignin S/G ratio of diverse plant biomass materials. © 2015, The Author(s).