6 resultados para Atomic and Ionic Dynamics in Laser
em eResearch Archive - Queensland Department of Agriculture
Resumo:
1. Many organisms inhabit strongly fluctuating environments but their demography and population dynamics are often analysed using deterministic models and elasticity analysis, where elasticity is defined as the proportional change in population growth rate caused by a proportional change in a vital rate. Deterministic analyses may not necessarily be informative because large variation in a vital rate with a small deterministic elasticity may affect the population growth rate more than a small change in a less variable vital rate having high deterministic elasticity. 2. We analyse a stochastic environment model of the red kangaroo (Macropus rufus), a species inhabiting an environment characterized by unpredictable and highly variable rainfall, and calculate the elasticity of the stochastic growth rate with respect to the mean and variability in vital rates. 3. Juvenile survival is the most variable vital rate but a proportional change in the mean adult survival rate has a much stronger effect on the stochastic growth rate. 4. Even if changes in average rainfall have a larger impact on population growth rate, increased variability in rainfall may still be important also in long-lived species. The elasticity with respect to the standard deviation of rainfall is comparable to the mean elasticities of all vital rates but the survival in age class 3 because increased variation in rainfall affects both the mean and variability of vital rates. 5. Red kangaroos are harvested and, under the current rainfall pattern, an annual harvest fraction of c. 20% would yield a stochastic growth rate about unity. However, if average rainfall drops by more than c. 10%, any level of harvesting may be unsustainable, emphasizing the need for integrating climate change predictions in population management and increase our understanding of how environmental stochasticity translates into population growth rate.
Resumo:
Spawning stock dynamics of 2 commercially important penaeid prawns, Metapenaeus bennettae and Penaeus esculentus, from 9 stations in Moreton Bay (27°15'S, 153°15'E), southeast Queensland, Australia, were examined. An egg production index (EPI), based on the relative abundance, proportion that were mature or ripe, and size of adult females, was used as a measure of egg production in the 2 populations. Egg production by M. bennettae was 20 to 30 higher than that by P. esculentus, extended over 7 to 8 mo each year and peaked from February to March (late summer to early autumn). Monthly patterns in egg production by M. bennettae varied between years. In contrast, P. esculentus produced most of its eggs in a single, clearly defined peak in October (spring), although production continued to March (early autumn) each year. The seasonal onset and subsequent decline in maturation in P. esculentus were rapid. Egg production by M. bennettae was several times higher at the 5 northern stations than at the 4 southern stations and negatively correlated with salinity during the main spawning period. Egg production by P. esculentus was less varied among stations and positively correlated with depth. P. esculentus appeared more likely than M. bennettae to experience recruitment overfishing because (1) the peak spawning period for P. esculentus was dependent on relatively few adult females spawning over a short period, and (2) the selectivity of trawl nets used in the bay was much higher for P. esculentus spawners than for those of M. bennettae. Compared with more northern populations, P. esculentus in Moreton Bay matured at a larger size, had lower incidences of insemination and mature or ripe females, and had a shorter spawning period. These results suggest the likelihood of recruitment overfishing in P. esculentus increases with increasing latitude.
Resumo:
The dynamics of Heteropogon contortus and Stylosanthes scabra cv. Seca populations were studied in a subset of treatments in an extensive grazing study conducted in central Queensland between 1988 and 2001. These treatments were 4 stocking rates in native pasture and 2 of these stocking rates in legume oversown and supplement/spring burning treatments. For the 1999-2000 summer, population data for H. contortus in 5 of these native pasture and supplement/burning treatments were compared with those for an additional burnt treatment. Seasonal rainfall throughout this study was below the long-term mean and mean annual pasture utilisation ranged from 24 to 61%. Increasing stocking rate from 5 to 2 ha/steer in native pasture reduced H. contortus plant density. Increasing stocking rate reduced seedling recruitment as a result of its effect on soil seedbanks. Seedling recruitment was the major determinant of change in plant density, although some individual H. contortus plants did survive throughout the study. Burning in spring 1999, particularly at light stocking rate, promoted seedling recruitment above that in both unburnt native and legume oversown pasture and resulted in increased H. contortus plant density. In the legume oversown treatments, S. scabra cv. Seca density increased rapidly from 15 plants/m2 in 1988 to 140 plants/m2 in 2001 following a lag phase between 1988 and 1993. This increased S. scabra density was associated with an eventual decline in H. contortus plant density through reduced seedling recruitment. It was concluded that H. contortus population density is sustainable at stocking rates of 4 and 5 ha/steer (30% pasture utilisation) and that spring burning at light stocking rate can promote H. contortus populations. Increasing densities of S. scabra need to be managed to prevent its dominance.
Resumo:
Telomere length has been purported as a biomarker for age and could offer a non-lethal method for determining the age of wild-caught individuals. Molluscs, including oysters and abalone, are the basis of important fisheries globally and have been problematic to accurately age. To determine whether telomere length could provide an alternative means of ageing molluscs, we evaluated the relationship between telomere length and age using the commercially important Sydney rock oyster (Saccostrea glomerata). Telomere lengths were estimated from tissues of known age individuals from different age classes, locations and at different sampling times. Telomere length tended to decrease with age only in young oysters less than 18 months old, but no decrease was observed in older oysters aged 2-4 years. Regional and temporal differences in telomere attrition rates were also observed. The relationship between telomere length and age was weak, however, with individuals of identical age varying significantly in their telomere length making it an imprecise age biomarker in oysters.
Resumo:
Managing large variations in herbage production, resulting from highly variable seasonal rainfall, provides a major challenge for the sustainable management of Astrebla (Mitchell grass) grasslands in Australia. A grazing study with sheep was conducted between 1984 and 2010 on an Astrebla grassland in northern Queensland to describe the effects of a range of levels of utilisation of the herbage at the end of the summer growing season (April–May in northern Australia) on the sustainability of these grasslands. In unreplicated paddocks, sheep numbers were adjusted annually to achieve 0, 10, 20, 30, 50 and 80% utilisation of the herbage mass at the end of the summer over the ensuing 12 months. Higher levels of utilisation reduced both total and Astrebla spp. herbage mass because of the effects of higher utilisation on Astrebla spp. and this effect was accentuated by drought. The tussock density of Astrebla spp. varied widely among years but with few treatment differences until 2005 when density was reduced at the 50% level of utilisation. A major change in density resulted from a large recruitment of Astrebla spp. in 1989 that influenced its density for the remainder of the study. Basal area of the tussocks fluctuated among years, with increases due to rainfall and decreases during droughts. Seasonal rainfall was more influential than level of utilisation in changes to the basal area of perennial grasses. Drought resulted in the death of Astrebla spp. tussocks and this effect was accentuated at higher levels of utilisation. A series of three grazing exclosures were used to examine the recovery of the density and basal area of Astrebla spp. after it had been reduced by 80% utilisation over the preceding 9 years. This recovery study indicated that, although grazing exclusion was useful in the recovery of Astrebla spp., above-average rainfall was the major factor driving increases in the basal area of perennial grasses. Spring values of the Southern Oscillation Index and associated rainfall probabilities were considered to have potential for understanding the dynamics of Astrebla spp. It was concluded that Astrebla grassland remained sustainable after 26 years when grazed at up to 30% utilisation, while, at 50% utilisation, they became unsustainable after 20 years. Results from this study emphasised the need to maintain the population of Astrebla spp. tussocks.