3 resultados para Atlantic Rainforest

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In tropical forests, natural disturbance creates opportunities for species to claim previously utilized space and resources and is considered an important mechanism in the maintenance of species diversity. However, ecologists have long recognized that disturbance also promotes exotic plant invasions. Cyclones cause extensive defoliation, loss of major branches and multiple tree falls, resulting in a significantly more open canopy and increased light and heat levels in the understorey. The widespread and massive disturbance caused by cyclones provides ideal conditions for rapid recruitment and spread of invasive species. The ecological roles of invasive species in rainforest habitats following such a severe disturbance are poorly understood. Severe category 4 Cyclone Larry crossed the North Queensland coast in March 2006 causing massive disturbance to rainforest habitats from Tully to Cairns and west to the Atherton Tablelands. We established 10 plots in an area extensively damaged by this cyclone near El Arish in North Queensland. On each plot nine 2 × 2 m quadrats were established with three quadrats per plot in each of the following treatments: (i) complete debris removal down to the soil layer, (ii) removal of coarse woody debris only, and (iii) uncleared. We monitored recruitment, growth and mortality of all native and invasive species in the 90 quadrats every 3 months since the cyclone. Here we present the recruitment dynamics of invasive species across the study area in relation to the level of disturbance, the type of quadrat treatment, and the diversity and abundance of the native recruiting flora over the first 12 months post-cyclone. Our results suggest that invasive species will mostly comprise a transient component of the flora in the early stages of the successional response. However, some species may have longer-term effects on the successional trajectory of the rainforest and future forest composition and structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An understanding of growth and photosynthetic potential of subtropical rainforest species to variations in light environment can be useful for determining the sequence of species introductions in rainforest restoration projects and mixed species plantations. We examined the growth and physiology of six Australian subtropical rainforest tree species in a greenhouse consisting of three artificial light environments (10%, 30%, and 60% full sunlight). Morphological responses followed the typical sun-shade dichotomy, with early and late secondary species (Elaeocarpus grandis, Flindersia brayleyana, Flindersia schottiana, and Gmelina leichhardtii) displaying higher relative growth rate (RGR) compared to mature stage species (Cryptocarya erythroxyion and Heritiera trifoliolatum). Growth and photosynthetic performance of most species reached a maximum in 30-60% full sunlight. Physiological responses provided limited evidence of a distinct dichotomy between early and late successional species. E. grandis and F brayleyana, provided a clear representation of early successional species, with marked increase in Am in high light and an ability to down regulate photosynthetic machinery in low light conditions. The remaining species (F. schottiana, G. leichhardtii, and H. trifoliolatum) were better represented as failing along a shade-tolerant continuum, with limited ability to adjust physiologically to an increase or decrease in light, maintaining similar A(max) across all light environments. Results show that most species belong to a shade-tolerant constituency, with an ability to grow and persist across a wide range of light environments. The species offer a wide range of potential planting scenarios and silvicultural options, with ample potential to achieve rapid canopy closure and rainforest restoration goals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dispersal is a significant determinant of the pattern and process of invasions; however, weed dispersal distances are rarely described and descriptions of dispersal kernels are completely lacking for vertebrate-dispersed weeds. Here, we describe dispersal kernels generated by a native disperser, the endangered southern cassowary (Casuarius casuarius, L.) for an invasive, tropical rainforest plant, pond apple (Annona glabra, L.). Pond apple is primarily water-dispersed and is managed as such. We consider whether cassowary dispersal, as a numerically subordinate dispersal mode, provides an additional dispersal service that may modify the invasion process. In infested areas, pond apple seed was common in cassowary dung. Gut passage had no effect on the probability of single seed germination but deposition in clumps or as whole fruits reduced the probability of germination below that of single seeds. Gut passage times ranged from 65 to 1675 min. Combined with cassowary movement data, this resulted in estimated dispersal distances of 12.5-5212 m, with a median distance of 387 m (quartile range 112-787 m). Native frugivores can be effective dispersers of weeds in rainforest and even terrestrial dispersers can provide long-distance dispersal. Importantly, though pond apple might be expected to be almost entirely dispersed downstream and along the margins of aquatic and marine habitats, cassowaries provide dispersal upstream and between drainages, leading to novel dispersal outcomes. Even through the provision of small quantities of novel dispersal outcomes, subordinate dispersal modes can play a significant role in determining invasion pattern and influence the ultimate success of control programs by providing dispersal to locations unattainable via the primary mode.