38 resultados para Atlantic Rain Forest
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Wongabel, a northeastern Queensland tropical, wet, evergreen forest, contains 22 species of Scarabaeinae dung beetles. Five of these species were observed to perch commonly on leaves at night. Length of the beetle and the height of its perch were recorded for each of 56 1 specimens. Unlike the New World tropical dung beetle perchers, no clear evidence was found that small species perched closer to the ground than larger species. The evidence gathered, at least for the four most common perchers, supports the hypothesis that perching is one type of foraging strategy. The similarities and differences between the Australian and New World perchers are discussed.
Resumo:
Mellitochory, seed dispersal by bees, has been implicated in long-distance dispersal of the tropical rain forest tree, Corymbia torelliana (Myrtaceae). We examined natural and introduced populations of C. torelliana for 4 years to determine the species of bees that disperse seeds, and the extent and distance of seed dispersal. The mechanism of seed dispersal by bees was also investigated, including fruit traits that promote dispersal, foraging behaviour of bees at fruits, and the fate of seeds. The fruit structure of C. torelliana, with seed presented in a resin reward, is a unique trait that promotes seed dispersal by bees and often results in long-distance dispersal. We discovered that a guild of four species of stingless bees, Trigona carbonaria, T. clypearis, T. sapiens, and T. hockingsi, dispersed seeds of C. torelliana in its natural range. More than half of the nests found within 250 m of fruiting trees had evidence of seed transport. Seeds were transported minimum distances of 20-220 m by bees. Approximately 88% of seeds were dispersed by gravity but almost all fruits retained one or two seeds embedded in resin for bee dispersal. Bee foraging for resin peaked immediately after fruit opening and corresponded to a peak of seed dispersal at the hive. There were strong correlations between numbers of seeds brought in and taken out of each hive by bees (r = 0.753-0.992, P < 0.05), and germination rates were 95 ± 5%. These results showed that bee-transported seeds were effectively dispersed outside of the hive soon after release from fruits. Seed dispersal by bees is a non-standard dispersal mechanism for C. torelliana, as most seeds are dispersed by gravity before bees can enter fruits. However, many C. torelliana seeds are dispersed by bees, since seeds are retained in almost all fruits, and all of these are dispersed by bees.
Resumo:
The north Queensland banana industry is under pressure from government and community expectations to exhibit good environmental stewardship. The industry is situated on the high-rainfall north Queensland coast adjacent to 2 natural icons, the Great Barrier Reef to the east and World Heritage-listed rain forest areas to the west. The main environmental concern is agricultural industry pollutants harming the Great Barrier Reef. In addition to environmental issues the banana industry also suffers financial pressure from declining margins and production loss from tropical cyclones. As part of a broader government strategy to reduce land-based pollutants affecting the Great Barrier Reef, the formation of a pilot banana producers group to address these environmental and economic pressures was facilitated. Using an integrated farming systems approach, we worked collaboratively with these producers to conduct an environmental risk assessment of their businesses and then to develop best management practices (BMP) to address environmental concerns. We also sought input from technical experts to provide increased rigour for the environmental risk assessment and BMP development. The producers' commercial experience ensured new ideas for improved sustainable practices were constantly assessed through their profit-driven 'filter' thus ensuring economic sustainability was also considered. Relying heavily on the producers' knowledge and experience meant the agreed sustainable practices were practical, relevant and financially feasible for the average-sized banana business in the region. Expert input and review also ensured that practices were technically sound. The pilot group producers then implemented and adapted selected key practices on their farms. High priority practices addressed by the producers group included optimizing nitrogen fertilizer management to reduce runoff water nitrification, developing practical ground cover management to reduce soil erosion and improving integrated pest management systems to reduce pesticide use. To facilitate wider banana industry understanding and adoption of the BMP's developed by the pilot group, we conducted field days at the farms of the pilot group members. Information generated by the pilot group has had wider application to Australian horticulture and the process has been subsequently used with the north Queensland sugar industry. Our experiences have shown that integrated farming systems methodologies are useful in addressing complex issues like environmental and economic sustainability. We have also found that individual horticulture businesses need on-going technical support for change to more sustainable practices. One-off interventions have little impact, as farm improvement is usually an on-going incremental process. A key lesson from this project has been the need to develop practical, farm scale economic tools to clarify and demonstrate the financial impact of alternative management practices. Demonstrating continued profitability is critical to encourage widespread industry adoption of environmentally sustainable practices
Resumo:
Invasive bird-dispersed plants often share the same suite of dispersers as co-occurring native species, resulting in a complex management issue. Integrated management strategies could incorporate manipulation of dispersal or establishment processes. To improve our understanding of these processes, we quantified seed rain, recruit and seed bank density, and species richness for bird-dispersed invasive and native species in three early successional subtropical habitats in eastern Australia: tree regrowth, shrub regrowth and native restoration plantings. We investigated the effects of environmental factors (leaf area index (LAI), distance to edge, herbaceous ground cover and distance to nearest neighbour) on seed rain, seed bank and recruit abundance. Propagule availability was not always a good predictor of recruitment. For instance, although native tree seed rain density was similar, and species richness was higher, in native plantings, compared with tree regrowth, recruit density and species richness were lower. Native plantings also received lower densities of invasive tree seed rain than did tree regrowth habitats, but supported a similar density of invasive tree recruits. Invasive shrub seed rain was recorded in highest densities in shrub regrowth sites, but recruit density was similar between habitats. We discuss the role of microsite characteristics in influencing post-dispersal processes and recruit composition, and suggest ways of manipulating these processes as part of an integrated management strategy for bird-dispersed weeds in natural areas.
Resumo:
The demonstrated wide adaptability, substantial yield potential and proven timber quality of African mahogany (Khaya senegalensis) from plantings of the late 1960s and early 1970s in northern Australia have led to a resurgence of interest in this high-value species. New plantations or trials have been established in several regions since the early 1990s -in four regions in north Queensland, two in the Northern Territory and one in Western Australia. Overall, more than 1500 ha had been planted by early 2007, and the national annual planting from 2007-2008 as currently planned will exceed 2400 ha. Proceedings of two workshops have summarised information available on the species in northern Australia, and suggested research and development (R&D) needs and directions. After an unsustained first phase of domestication of K. senegalensis in the late 1960s to the early 1970s, a second phase began in northern Australia in 2001 focused on conservation and tree improvement that is expected to provide improved planting stock by 2010. Work on other aspects of domestication is also described in this paper: the current estate and plans for extension; site suitability, soils and nutrition; silviculture and management; productivity; pests and diseases; and log and wood properties of a sample of superior trees from two mature plantations of unselected material near Darwin. Some constraints on sustainable plantation development in all these fields are identified and R&D needs proposed. A sustained R&D effort will require a strategic coordinated approach, cooperative implementation and extra funding. Large gains in plantation profitability can be expected to flow from such inputs.
Resumo:
Runoff and sediment loss from forest roads were monitored for a two-year period in a Pinus plantation in southeast Queensland. Two classes of road were investigated: a gravelled road, which is used as a primary daily haulage route for the logging area, and an ungravelled road, which provides the main access route for individual logging compartments and is intensively used as a haulage route only during the harvest of these areas (approximately every 30 years). Both roads were subjected to routine traffic loads and maintenance during the study. Surface runoff in response to natural rainfall was measured and samples taken for the determination of sediment and nutrient (total nitrogen, total phosphorus, dissolved organic carbon and total iron) loads from each road. Results revealed that the mean runoff coefficient (runoff depth/rainfall depth) was consistently higher from the gravelled road plot with 0.57, as compared to the ungravelled road with 0.38. Total sediment loss over the two-year period was greatest from the gravelled road plot at 5.7 t km−1 compared to the ungravelled road plot with 3.9 t km−1. Suspended solids contributed 86% of the total sediment loss from the gravelled road, and 72% from the ungravelled road over the two years. Nitrogen loads from the two roads were both relatively constant throughout the study, and averaged 5.2 and 2.9 kg km−1 from the gravelled and ungravelled road, respectively. Mean annual phosphorus loads were 0.6 kg km−1 from the gravelled road and 0.2 kg km−1 from the ungravelled road. Organic carbon and total iron loads increased in the second year of the study, which was a much wetter year, and are thought to reflect the breakdown of organic matter in roadside drains and increased sediment generation, respectively. When road and drain maintenance (grading) was performed runoff and sediment loss were increased from both road types. Additionally, the breakdown of the gravel road base due to high traffic intensity during wet conditions resulted in the formation of deep (10 cm) ruts which increased erosion. The Water Erosion Prediction Project (WEPP):Road model was used to compare predicted to observed runoff and sediment loss from the two road classes investigated. For individual rainfall events, WEPP:Road predicted output showed strong agreement with observed values of runoff and sediment loss. WEPP:Road predictions for annual sediment loss from the entire forestry road network in the study area also showed reasonable agreement with the extrapolated observed values.
Resumo:
Araucaria cunninghamii (hoop pine) typically occurs as an emergent tree over subtropical and tropical rainforests, in a discontinuous distribution that extends from West Irian Jaya at about 0°30'S, through the highlands of Indonesian New Guinea and Papua New Guinea, along the east coast of Australia from 11°39'S in Queensland to 30°35'S in northern New South Wales. Plantations established in Queensland since the 1920s now total about 44000 ha, and constitute the primary source for the continuing supply of hoop pine quality timber and pulpwood, with a sustainable harvest exceeding 440 000 m3 y-1. Establishment of these managed plantations allowed logging of all native forests of Araucaria species (hoop pine and bunya pine, A. bidwillii) on state-owned lands to cease in the late 1980s, and the preservation of large areas of araucarian forest types within a system of state-owned and managed reserves. The successful plantation program with this species has been strongly supported by genetic improvement activities since the late 1940s - through knowledge of provenance variation and reproductive biology, the provision of reliable sources of improved seed, and the capture of substantial genetic gains in traits of economic importance (for example growth, stem straightness, internode length and spiral grain). As such, hoop pine is one of the few tropical tree species that, for more than half a century, has been the subject of continuous genetic improvement. The history of commercialisation and genetic improvement of hoop pine provides an excellent example of the dual economic and conservation benefits that may be obtained in tropical tree species through the integration of gene conservation and genetic improvement with commercial plantation development. This paper outlines the natural distribution and reproductive biology of hoop pine, describes the major achievements of the genetic improvement program in Queensland over the past 50+ y, summarises current understanding of the genetic variation and control of key selection traits, and outlines the means by which genetic diversity in the species is being conserved.
Resumo:
Two examples of GIS-based multiple-criteria evaluations of plantation forests are presented. These desktop assessments use available topographical, geological and pedological information to establish the risk of occurrence of certain environmentally detrimental processes. The first case study is concerned with the risk that chemical additives (i.e. simazine) applied within the forestry landscape may reach the drainage system. The second case study assesses the vulnerability of forested areas to landslides. The subject of the first multiple-criteria evaluation (MCE) was a 4 km2 logging area, which had been recently site-prepared for a Pinus plantation. The criteria considered relevant to the assessment were proximity to creeks, slope, soil depth to the restrictive layer (i.e. potential depth to a perched water table) and soil erodability (based on clay content). The output of the MCE was in accordance with field observations, showing that this approach has the potential to provide management support by highlighting areas vulnerable to waterlogging, which in turn can trigger overland flow and export of pollutants to the local stream network. The subject of the second evaluation was an Araucaria plantation which is prone to landslips during heavy rain. The parameters included in the assessment were drainage system, the slope of the terrain and geological features such as rocks and structures. A good correlation between the MCE results and field observations was found, suggesting that this GIS approach is useful for the assessment of natural hazards. Multiple-criteria evaluations are highly flexible as they can be designed in either vector or raster format, depending on the type of available data. Although tested on specific areas, the MCEs presented here can be easily used elsewhere and assist both management intervention and the protection of the adjacent environment by assessing the vulnerability of the forest landscape to either introduced chemicals or natural hazards.
Resumo:
Blackwood (Acacia melanoxylon R. Br.) is a valuable leguminous cabinetwood species which is commonly found as a canopy or subcanopy tree in a broad range of mixed-species moist forests on tablelands and coastal escarpments in eastern Australia. This paper reports on the competitive light environment of a commercially valuable multi-species regrowth forest in NW Tasmania, in order to define some of the functional interactions and competitive dynamics of these stands. Comparative observations were made of the internal forest light environment in response to small-gap silvicultural treatments, in a young regenerative mix of three codominant tree species. Light measurements were made during periods of maximum external irradiance of the regrowth Eucalyptus obliqua/A. melanoxylon forest canopy at age 10.5 years. This was at a time of vigourous stand development, 4.5 years following the application of three experimental silvicultural treatments whose effects were observed in comparison with an untreated canopy sample designed as a control. Minimal irradiance was observed within and beneath the dense subcanopy of the native nurse species (Pomaderris apetala) which closely surrounds young blackwood regeneration. Unlike current plantation nurse systems, the dense foliage of the native broadleaved Pomaderris all but eliminated direct side-light and low-angle illumination of the young blackwood, from the beginning of tree establishment. The results demonstrated that retention of these densely stocked native codominants effectively suppressed both size and frequency of blackwood branches on the lower bole, through effective and persistent interception of sunlight. Vigorous young blackwood crowns later overtopped the codominant nurse species, achieving a predictable height of branch-free bole. This competitive outcome offers a valuable tool for management of blackwood crown dynamics, stem form and branch habit through manipulation of light environment in young native regrowth systems. Results demonstrate that effective self-pruning in the lower bole of blackwood is achieved through a marked reduction in direct and diffuse sunlight incident on the lower crown, notably to less than 10-15% of full sunlight intensity during conditions of maximum insolation. The results also contain insights for the improved design of mixed-species plantation nurse systems using these or functionally similar species' combinations. Based on evidence presented here for native regrowth forest, plantation nurse systems for blackwood will need to achieve 85-90% interception of external side-light during early years of tree development if self-pruning is to emulate the results achieved in the native nurse system.
Resumo:
Site index prediction models are an important aid for forest management and planning activities. This paper introduces a multiple regression model for spatially mapping and comparing site indices for two Pinus species (Pinus elliottii Engelm. and Queensland hybrid, a P. elliottii x Pinus caribaea Morelet hybrid) based on independent variables derived from two major sources: g-ray spectrometry (potassium (K), thorium (Th), and uranium (U)) and a digital elevation model (elevation, slope, curvature, hillshade, flow accumulation, and distance to streams). In addition, interpolated rainfall was tested. Species were coded as a dichotomous dummy variable; interaction effects between species and the g-ray spectrometric and geomorphologic variables were considered. The model explained up to 60% of the variance of site index and the standard error of estimate was 1.9 m. Uranium, elevation, distance to streams, thorium, and flow accumulation significantly correlate to the spatial variation of the site index of both species, and hillshade, curvature, elevation and slope accounted for the extra variability of one species over the other. The predicted site indices varied between 20.0 and 27.3 m for P. elliottii, and between 23.1 and 33.1 m for Queensland hybrid; the advantage of Queensland hybrid over P. elliottii ranged from 1.8 to 6.8 m, with the mean at 4.0 m. This compartment-based prediction and comparison study provides not only an overview of forest productivity of the whole plantation area studied but also a management tool at compartment scale.
Resumo:
Forest health surveillance (FHS) of hardwood plantations commenced in Queensland in 1997 as plantations expanded following a state government planting initiative arising from the national 2020 forest policy vision. The estate was initially characterised by a large number of small plantations (10-50 ha), although this has changed more recently with the concentration of larger plantations in the central coast and South Burnett regions. Due to the disparate nature of the resource, drive- and walkthrough surveys of subsets of plantations have been undertaken in preference to aerial surveys. FHS has been effective in detecting a number of new hardwood pests in Queensland including erinose mites (Rhombacus and Acalox spp.), western white gum plate galler (Ophelimus sp.), Creiis psyllid and bronzing bug (Thaumastocoris sp.), in evaluating their potential impact and assisting in focussing future research efforts. Since 2003 there has been an increased emphasis on training operational staff to take a greater role in identifying and reporting on forest health issues. This has increased their awareness of forest health issues, but their limited time to specifically survey and report on pests and diseases, and high rates of staff turnover, necessitate frequent ongoing training. Consequently, common and widespread problems such as quambalaria shoot blight (Quambalaria pitereka), chrysomelid leaf beetles (mainly Paropsis atomaria) and erinose mites may be under-reported or not reported, and absence data may often not be recorded at all. Comment is made on the future directions that FHS may take in hardwood plantations in Queensland.
Resumo:
Hazard site surveillance is a system for post-border detection of new pest incursions, targeting sites that are considered potentially at high risk of such introductions. Globalisation, increased volumes of containerised freight and competition for space at domestic ports means that goods are increasingly being first opened at premises some distance from the port of entry, thus dispersing risk away from the main inspection point. Hazard site surveillance acts as a backstop to border control to ensure that new incursions are detected sufficiently early to allow the full range of management options, including eradication and containment, to be considered. This is particularly important for some of the more cryptic forest pests whose presence in a forest often is not discovered until populations are already high and the pest is well established. General requirements for a hazard site surveillance program are discussed using a program developed in Brisbane, Australia, in 2006 as a case study. Some early results from the Brisbane program are presented. In total 67 species and 5757 individuals of wood-boring beetles have been trapped and identified during the program to date. Scolytines are the most abundant taxa, making up 83% of the catch. No new exotics have been trapped but 19 of the species and 60% of all specimens caught are exotics that are already established in Australia.
Resumo:
This paper describes the establishment of provenance seedling seed orchards of three spotted gums and cadaga (all species of Corymbia ex Eucalyptus). It also discusses the limitations of growing the spotted gums as pure species including: lack of mass flowering, susceptibility to a fungal shoot blight and low amenability to vegetative propagation. These limitations, together with observation of putative natural hybrids of the spotted gums with cadaga, and the early promise of manipulated hybrids, led to an intensive breeding and testing program. Many hybrid families have significant advantages in growth and tolerance to disease, insects and frost, and can be vegetatively propagated. They also exhibit broad environmental plasticity, allowing the best varieties to be planted across a wider range of sites than the spotted gums, resulting in more land being suitable for plantation development.
Resumo:
The introduction describes productive forest in Queensland and summaries the principles of native forest management that achieve optimum productivity. Case study 1 deals with thinning an even-aged regrowth forest. It shows how thinning the stand actively manages the future composition and structure to improve productivity in the best stems and increase the commercial value of the next harvest. Case study 2 describes restoring productivity in a high-graded spotted gum - ironbark forest. It shows that defective and non-saleable trees should be removed so they do not repress the future stand; and that regeneration should be thinned, retaining the best trees in adequate growing space. Case study 3 discusses on-farm value adding for hardwood forests. It shows how long-term viability and maximum productivity and returns depend on the best management practices and knowing how to obtain the best returns from a range of forest products. Case study 4 examines integrated harvesting in a eucalypt forest. It shows how integrating the harvest enables the full range of timber products are harvested and sold for their maximum value while reducing the amount of waste.