2 resultados para Aristarque de Tégée (04..-04.. av. J.-C.) -- Portraits

em eResearch Archive - Queensland Department of Agriculture


Relevância:

40.00% 40.00%

Publicador:

Resumo:

There are many potential bioremediation approaches that may be suitable for prawn farms in Queensland. Although most share generally accepted bioremediation principles, advocacy for different methods tends to vary widely. This diversity of approach is particularly driven by the availability and knowledge of functional species at different localities around the world. In Australia, little is known about the abilities of many native species in this regard, and translocation and biosecurity issues prevent the use of exotic species that have shown potential in other countries. Species selected must be tolerant of eutrophic conditions and ecological shifts, because prawn pond nutrient levels and pathways can vary with different assemblages of autotrophic and heterotrophic organisms. Generally, they would be included in a constructed ecosystem because of their functional contributions to nutrient cycling and uptake, and to create nutrient sinks in forms of harvestable biomass. Wide salinity, temperature and water quality tolerances are also valuable attributes for selected species due to the sometimes-pronounced effects of environmental extremes, and to provide over-wintering options and adequate safety margins in avoiding mass mortalities. To practically achieve these bioremediation polycultures on a large scale, and in concert with the operations of a prawn farm, methods involving seed production, stock management, and a range of other farm engineering and product handling systems need to be reliably achievable and economically viable. Research funding provided by the Queensland Government through the Aquaculture Industry Development Initiative (AIDI) 2002-04 has enabled a number of technical studies into biological systems to treat prawn farm effluent for recirculation and improved environmental sustainability. AIDI bioremediation research in southern Queensland was based at the Bribie Island Aquaculture Research Centre (BIARC), and was conducted in conjunction with AIDI genetics and selection research, and a Natural Heritage Trust (NHT) funded program (Coast and Clean Seas Project No.717757). This report compilation provides a summary of some of the work conducted within these programs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A protocol was developed for short-term preservation and distribution of the plantation eucalypt, Corymbia torelliana × C. citriodora, using alginate-encapsulated shoot tips and nodes as synthetic seeds. Effects of sowing medium, auxin concentration, storage temperature and planting substrate on shoot regrowth or conversion into plantlets were assessed for four different clones. High frequencies of shoot regrowth (76–100%) from encapsulated explants were consistently obtained in hormone-free half- and full-strength Murashige and Skoog (MS) sowing media. Conversion into plantlets from synthetic seeds was achieved on half-strength MS medium by treating shoot tips or nodes with 4.9–78.4 μM IBA prior to encapsulation. Pre-treatment with 19.6 μM IBA provided 62–100% conversion, and 95–100% of plantlets survived after acclimatisation under nursery conditions. Synthetic seeds containing explants pre-treated with IBA were stored for 8 weeks much more effectively at 25°C than at 4°C, with regrowth frequencies of 50–84% at 25°C compared with 0–4% at 4°C. To eliminate the in vitro culture step after encapsulation, synthetic seeds were allowed to pre-convert before sowing directly onto a range of ex vitro non-sterile planting substrates. Highest frequencies (46–90%) of plantlet formation from pre-converted synthetic seeds were obtained by transferring shoot tip-derived synthetic seeds onto an organic compost substrate. These plantlets exhibited almost 100% survival in the nursery without mist irrigation. Pre-conversion of non-embryonic synthetic seeds is a novel technique that provides a convenient alternative to somatic embryo-derived artificial seeds.