11 resultados para Arachis glabrata
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Peanut (Arachis hypogaea L.) lines exhibiting high levels of resistance to peanut stripe virus (PStV) were obtained following microprojectile bombardment of embryogenic callus derived from mature seeds. Fertile plants of the commercial cultivars Gajah and NC7 were regenerated following co-bombardmentwith the hygromycin resistance gene and one of two forms of the PStV coat protein (CP) gene, an untranslatable, full length sequence (CP2) or a translatable gene encoding a CP with an N-terminal truncation (CP4). High level resistance to PStV was observed for both transgenes when plants were challenged with the homologous virus isolate. The mechanism of resistance appears to be RNA-mediated, since plants carrying either the untranslatable CP2 or CP4 had no detectable protein expression, but were resistant or immune (no virus replication). Furthermore, highly resistant, but not susceptible CP2 T0 plants contained transgene-specific small RNAs. These plants now provide important germplasm for peanut breeding, particularly in countries where PStV is endemic and poses a major constraint to peanut production.
Resumo:
The fatty acid composition of ground nuts (Arachis hypogaea L.) commonly known as peanuts, is an important consideration when a new variety is being released. The composition impacts on nutrition and, importantly, self-life of peanut products. To select for suitable breeding material, it was necessary to develop a rapid, non-derstructive and cost-efficient method. Near infrared spectroscopy was chosen as that methodology. Calibrations were developed for two major fatty-acid components, oleic and linoleic acids and two minor components, palmitic and stearic acids, as well as total oil content. Partial least squares models indicated a high level of precision with a squared multiple correlation coefficient of greater than 0.90 for each constitutent. Standard errors for prediction for oleic, linoleic, palmitic, stearic acids and total oil content were 6.4%, 4.5%, 0.8%, 0.9% and 1.3% respectively. The results demonstrated that reasonable calibrations could be developed to predict oil composition and content of peanuts for a breeding programme.
Resumo:
Background: Cultivated peanut or groundnut (Arachis hypogaea L.) is the fourth most important oilseed crop in the world, grown mainly in tropical, subtropical and warm temperate climates. Due to its origin through a single and recent polyploidization event, followed by successive selection during breeding efforts, cultivated groundnut has a limited genetic background. In such species, microsatellite or simple sequence repeat (SSR) markers are very informative and useful for breeding applications. The low level of polymorphism in cultivated germplasm, however, warrants a need of larger number of polymorphic microsatellite markers for cultivated groundnut. Results: A microsatellite- enriched library was constructed from the genotype TMV2. Sequencing of 720 putative SSR-positive clones from a total of 3,072 provided 490 SSRs. 71.2% of these SSRs were perfect type, 13.1% were imperfect and 15.7% were compound. Among these SSRs, the GT/CA repeat motifs were the most common (37.6%) followed by GA/CT repeat motifs (25.9%). The primer pairs could be designed for a total of 170 SSRs and were optimized initially on two genotypes. 104 (61.2%) primer pairs yielded scorable amplicon and 46 (44.2%) primers showed polymorphism among 32 cultivated groundnut genotypes. The polymorphic SSR markers detected 2 to 5 alleles with an average of 2.44 per locus. The polymorphic information content (PIC) value for these markers varied from 0.12 to 0.75 with an average of 0.46. Based on 112 alleles obtained by 46 markers, a phenogram was constructed to understand the relationships among the 32 genotypes. Majority of the genotypes representing subspecies hypogaea were grouped together in one cluster, while the genotypes belonging to subspecies fastigiata were grouped mainly under two clusters. Conclusion. Newly developed set of 104 markers extends the repertoire of SSR markers for cultivated groundnut. These markers showed a good level of PIC value in cultivated germplasm and therefore would be very useful for germplasm analysis, linkage mapping, diversity studies and phylogenetic relationships in cultivated groundnut as well as related Arachis species.
Resumo:
Cultivated groundnut (Arachis hypogaea L.) is an agronomically and economically important oilseed crop grown extensively throughout the semi-arid tropics of Asia, Africa and Latin America. Rust (Puccinia arachidis) and late leaf spot (LLS, Phaseoisariopsis personata) are among the major diseases causing significant yield loss in groundnut. The development of varieties with high levels of resistance has been constrained by adaptation of disease isolates to resistance sources and incomplete resistance in resistant sources. Despite the wide range of morphological diversity observed in the cultivated groundnut gene pool, molecular marker analyses have thus far been unable to detect a parallel level of genetic diversity. However, the recent development of simple sequence repeat (SSR) markers presents new opportunities for molecular diversity analysis of cultivate groundnut. The current study was conducted to identify diverse disease resistant germplasm for the development of mapping populations and for their introduction into breeding programs. Twenty-three SSRs were screened across 22 groundnut genotypes with differing levels of resistance to rust and LLS. Overall, 135 alleles across 23 loci were observed in the 22 genotypes screened. Twelve of the 23 SSRs (52%) showed a high level of polymorphism, with PIC values ≥0.5. This is the first report detecting such high levels of genetic polymorphism in cultivated groundnut. Multi-dimensional scaling and cluster analyses revealed three well-separated groups of genotypes. Locus by locus AMOVA and Kruskal-Wallis one-way ANOVA identified candidate SSR loci that may be valuable for mapping rust and LLS resistance. The molecular diversity analysis presented here provides valuable information for groundnut breeders designing strategies for incorporating and pyramiding rust and late leaf spot resistances and for molecular biologists wishing to create recombinant inbred line populations to map these traits.
Resumo:
The effect of defoliation on Amarillo (Arachis pintoi cv. Amarillo) was studied in a glasshouse and in mixed swards with 2 tropical grasses. In the glasshouse, Amarillo plants grown in pots were subjected to a 30/20°C or 25/15°C temperature regime and to defoliation at 10-, 20- or 30-day intervals for 60 days. Two field plot studies were conducted on Amarillo with either irrigated kikuyu (Pennisetum clandestinum) in autumn and spring or dryland Pioneer rhodes grass (Chloris gayana) over summer and autumn. Treatments imposed were 3 defoliation intervals (7, 14 and 28 days) and 2 residual heights (5 and 10 cm for kikuyu; 3 and 10 cm for rhodes grass) with extra treatments (56 days to 3 cm for both grasses and 21 days to 5 cm for kikuyu). Defoliation interval had no significant effect on accumulated Amarillo leaf dry matter (DM) at either temperature regime. At the higher temperature, frequent defoliation reduced root dry weight (DW) and increased crude protein (CP) but had no effect on stolon DW or in vitro organic matter digestibility (OMD). On the other hand, at the lower temperature, frequent defoliation reduced stolon DW and increased OMD but had no effect on root DW or CP. Irrespective of temperaure and defoliation, water-soluble carbohydrate levels were higher in stolons than in roots (4.70 vs 3.65%), whereas for starch the reverse occured (5.37 vs 9.44%). Defoliating the Amarillo-kikuyu sward once at 56 days to 3 cm produced the highest DM yield in autumn and sprong (582 and 7121 kg/ha DM, respectively), although the Amarillo component and OMD were substantially reduced. Highest DM yields (1726 kg/ha) were also achieved in the Amarillo-rhodes grass sward when defoliated every 56 days to 3 cm, although the Amarillo component was unaffected. In a mixed sward with either kikuyu or rhodes grass, the Amarillo component in the sward was maintained up to a 28-day defoliation interval and was higher when more severely defoliated. The results show that Amarillo can tolerate frequent defoliation and that it can co-exist with tropical grasses of differing growth habits, provided the Amarillo-tropical grass sward is subject to frequent and severe defoliation.
Resumo:
The effects of plant growth conditions on concentrations of proteins, including allergens, in peanut (Arachis hypogaea L.) kernels are largely unknown. Peanuts (cv. Walter) were grown at five sites (Taabinga, Redvale, Childers, Bundaberg, and Kairi) covering three commercial growing regions in Queensland, Australia. Differences in temperature, rainfall, and solar radiation during the growing season were evaluated. Kernel yield varied from 2.3 t/ha (Kairi) to 3.9 t/ha (Childers), probably due to differences in solar radiation. Crude protein appeared to vary only between Kairi and Childers, whereas Ara h 1 and 2 concentrations were similar in all locations. 2D-DIGE revealed significant differences in spot volumes for only two minor protein spots from peanuts grown in the five locations. Western blotting using peanut-allergic serum revealed no qualitative differences in recognition of antigens. It was concluded that peanuts grown in different growing regions in Queensland, Australia, had similar protein compositions and therefore were unlikely to show differences in allergenicity.
Resumo:
Three drafts of Bos indicus cross steers (initially 178-216 kg) grazed Leucaena-grass pasture [Leucaena leucocephala subspecies glabrata cv. Cunningham with green panic (Panicum maximum cv. trichoglume)] from late winter through to autumn during three consecutive years in the Burnett region of south-east Queensland. Measured daily weight gain (DWGActual) of the steers was generally 0.7-1.1 kg/day during the summer months. Estimated intakes of metabolisable energy and dry matter (DM) were calculated from feeding standards as the intakes required by the steers to grow at the DWGActual. Diet attributes were predicted from near infrared reflectance spectroscopy spectra of faeces (F.NIRS) using established calibration equations appropriate for northern Australian forages. Inclusion of some additional reference samples from cattle consuming Leucaena diets into F.NIRS calibrations based on grass and herbaceous legume-grass pastures improved prediction of the proportion of Leucaena in the diet. Mahalanobis distance values supported the hypothesis that the F.NIRS predictions of diet crude protein concentration and DM digestibility (DMD) were acceptable. F.NIRS indicated that the percentage of Leucaena in the diet varied widely (10-99%). Diet crude protein concentration and DMD were usually high, averaging 12.4 and 62%, respectively, and were related asymptotically to the percentage of Leucaena in the diet (R2 = 0.48 and 0.33, respectively). F.NIRS calibrations for DWG were not satisfactory to predict this variable from an individual faecal sample since the s.e. of prediction were 0.33-0.40 kg/day. Cumulative steer liveweight (LW) predicted from F.NIRS DWG calibrations, which had been previously developed with tropical grass and grass-herbaceous legume pastures, greatly overestimated the measured steer LW; therefore, these calibrations were not useful. Cumulative steer LW predicted from a modified F.NIRS DWG calibration, which included data from the present study, was strongly correlated (R2 = 0.95) with steer LW but overestimated LW by 19-31 kg after 8 months. Additional reference data are needed to develop robust F.NIRS calibrations to encompass the diversity of Leucaena pastures of northern Australia. In conclusion, the experiment demonstrated that F.NIRS could improve understanding of diet quality and nutrient intake of cattle grazing Leucaena-grass pasture, and the relationships between nutrient supply and cattle growth.
Resumo:
Cucumber mosaic virus (CMV) was found by reverse transcription polymerase chain reaction (RT-PCR) to be not fully systemic in naturally infected kava (Piper methysticum) plants in Fiji. Twenty-six of 48 samples (54%) from various tissues of three recently infected plants were CMV-positive compared with 7/51 samples (14%) from three long-term infections (plants affected by dieback for more than 1 year). The virus was also found to have a limited ability to move into newly formed stems. CMV was detected in only 2/23 samples taken from re-growth stems arising from known CMV infected/dieback affected plants. Mechanical inoculation experiments conducted in Fiji indicate that the known kava intercrop plants banana (Musa spp.), pineapple (Ananas comosus), peanut (Arachis hypogaea) and the common weed Mikania micrantha are potential hosts for a dieback-causing strain of CMV It was not possible to transmit the virus mechanically to the common kava intercrop plants taro (Colocasia esculenta), Xanthosoma sp., sweet potato (Ipomoea batatas), yam (Dioscorea alata), papaya (Carica papaya) or the weed Momordica charantia. Implications of the results of this research on a possible integrated disease management strategy are discussed.
Resumo:
Measurement or accurate simulation of soil temperature is important for improved understanding and management of peanuts (Arachis hypogaea L.), due to their geocarpic habit. A module of the Agricultural Production Systems Simulator Model (APSIM), APSIM-soiltemp, which uses input of ambient temperature, rainfall and solar radiation in conjunction with other APSIM modules, was evaluated for its ability to simulate surface 5 cm soil temperature in 35 peanut on-farm trials conducted between 2001 and 2005 in the Burnett region (25°36'S to 26°41'S, 151°39'E to 151°53'E). Soil temperature simulated by the APSIM-soiltemp module, from 30 days after sowing until maturity, closely matched the measured values (R2 ≥ 0.80)in the first three seasons (2001-04). However, a slightly poorer relationship (R2 = 0.55) between the observed and the simulated temperatures was observed in 2004-05, when the crop was severely water stressed. Nevertheless, over all the four seasons, which were characterised by a range of ambient temperature, leaf area index, radiation and soil water, each of which was found to have significant effects on soil temperature, a close 1:1 relationship (R2 = 0.85) between measured and simulated soil temperatures was observed. Therefore, the pod zone soil temperature simulated by the module can be generally relied on in place of measured input of soil temperature in APSIM applications, such as quantifying climatic risk of aflatoxin accumulation.
Resumo:
When exposed to hot (22-35 degrees C) and dry climatic conditions in the field during the final 4-6 weeks of pod filling, peanuts (Arachis hypogaea L.) can accumulate highly carcinogenic and immuno-suppressing aflatoxins. Forecasting of the risk posed by these conditions can assist in minimizing pre-harvest contamination. A model was therefore developed as part of the Agricultural Production Systems Simulator (APSIM) peanut module, which calculated an aflatoxin risk index (ARI) using four temperature response functions when fractional available soil water was <0.20 and the crop was in the last 0.40 of the pod-filling phase. ARI explained 0.95 (P <= 0.05) of the variation in aflatoxin contamination, which varied from 0 to c. 800 mu g/kg in 17 large-scale sowings in tropical and four sowings in sub-tropical environments carried out in Australia between 13 November and 16 December 2007. ARI also explained 0.96 (P <= 0.01) of the variation in the proportion of aflatoxin-contaminated loads (>15 mu g/kg) of peanuts in the Kingaroy region of Australia during the period between the 1998/99 and 2007/08 seasons. Simulation of ARI using historical climatic data from 1890 to 2007 indicated a three-fold increase in its value since 1980 compared to the entire previous period. The increase was associated with increases in ambient temperature and decreases in rainfall. To facilitate routine monitoring of aflatoxin risk by growers in near real time, a web interface of the model was also developed. The ARI predicted using this interface for eight growers correlated significantly with the level of contamination in crops (r=095, P <= 0.01). These results suggest that ARI simulated by the model is a reliable indicator of aflatoxin contamination that can be used in aflatoxin research as well as a decision-support tool to monitor pre-harvest aflatoxin risk in peanuts.
Resumo:
Peanut (Arachis hypogaea L.) is an economically important legume crop in irrigated production areas of northern Australia. Although the potential pod yield of the crop in these areas is about 8 t ha(-1), most growers generally obtain around 5 t ha(-1), partly due to poor irrigation management. Better information and tools that are easy to use, accurate, and cost-effective are therefore needed to help local peanut growers improve irrigation management. This paper introduces a new web-based decision support system called AQUAMAN that was developed to assist Australian peanut growers schedule irrigations. It simulates the timing and depth of future irrigations by combining procedures from the food and agriculture organization (FAO) guidelines for irrigation scheduling (FAO-56) with those of the agricultural production systems simulator (APSIM) modeling framework. Here, we present a description of AQUAMAN and results of a series of activities (i.e., extension activities, case studies, and a survey) that were conducted to assess its level of acceptance among Australian peanut growers, obtain feedback for future improvements, and evaluate its performance. Application of the tool for scheduling irrigations of commercial peanut farms since its release in 2004-2005 has shown good acceptance by local peanuts growers and potential for significantly improving yield. Limited comparison with the farmer practice of matching the pan evaporation demand during rain-free periods in 2006-2007 and 2008-2009 suggested that AQUAMAN enabled irrigation water savings of up to 50% and the realization of enhanced water and irrigation use efficiencies.