3 resultados para Approximation en probabilité
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Mature green mango fruits of commercially important varieties were screened to investigate the levels of constitutive antifungal compounds in peel and to assess anthracnose disease after inoculation with Colletotrichum gloeosporioides. High pressure liquid chromatography was used to quantify the levels of 5-n-heptadecenylresorcinol and 5-n-pentadecylresorcinol in the peel extracts. The fruit peel of the varieties ‘Kensington Pride’ and ‘Keitt’ were observed to have the highest levels of both 5-n-heptadecenylresorcinol (107.3-123.7 and 49.9-61.4 μg/g FW, respectively) and 5-n-pentadecylresorcinol (6.32-7.99 and 3.30-6.05 μg/g FW, respectively), and the fruit of the two varieties were found to have some resistance to postharvest anthracnose. The varieties ‘Kent’, ‘R2E2’, ‘Nam Doc Mai’, ‘Calypso’, and ‘Honey Gold’ contained much lower concentrations of resorcinols in their peel and three of these varieties were found to be more susceptible to anthracnose. Concentrations of 5-nheptadecenylresorcinol were significantly lower at the ‘sprung’ and ‘eating ripe’ stages of ripening compared to levels at harvest. Concentrations of 5-n-pentadecylresorcinol did not differ significantly across the three stages of ripening. The levels of these two resorcinols were found to be strongly inter-correlated (P < 0.001, r2 = 0.71), with concentrations of 5-nheptadecenylresorcinol being an average 18 times higher than those of 5-npentadecylresorcinol. At the ‘eating ripe’ stage, significant relationships were observed between the concentrations of each type of alk(en)ylresorcinol and anthracnose lesion areas following postharvest inoculation, P<0.001, r2= 0.69 for 5-n pentadecylresorcinol, and P<0.001, r2= 0.44 for 5-n-heptadecenylresorcinol.
Resumo:
Physical and chemical properties of sap and sap concentrations of constitutive alk(en)ylresorcinols were determined in several varieties of mango grown in different locations in Queensland, Australia, over two consecutive cropping seasons. Sap weight from individual fruit, sap pH, percentage of non-aqueous sap and concentrations of constitutive alk(en)ylresorcinols (5-n-heptadecenylresorcinol and 5-n-pentadecylresorcinol) in sap varied significantly among the varieties. 'Calypso', 'Keitt', 'Kensington Pride' and 'Celebration' had the greatest proportion of non-aqueous sap, whereas 'Nam Doc Mai' had the least. The highest concentrations of 5-n-heptadecenylresorcinol were found in the sap of 'Kensington Pride', and the lowest in 'Honey Gold' and 'Nam Doc Mai'. Highest concentrations of 5-n-pentadecylresorcinol were found in sap of 'Calypso' and 'Celebration', and the lowest levels were in 'Honey Gold' and 'Nam Doc Mai'. There was a direct relationship between the percentage of non-aqueous sap and the concentrations of alk(en)ylresorcinols (r(2) = 0.77 for 5-n-heptadecenylresorcinol, and r(2) = 0.87 for 5-n-pentadecylresorcinol). The alk(en)ylresorcinols were distributed mainly in the upper non-aqueous phase of 'Kensington Pride' sap. Growing location also had significant effects on the composition of mango sap but the effects appeared to be related to differences in maturity. Sap removal is necessary to prevent sapburn, but considerable quantities of alk(en)ylresorcinols that assist in protecting the harvested fruit from anthracnose disease are also removed.
Resumo:
Two preformed alk(en)ylresorcinols, 5-n-heptadecenylresorcinol and 5-n-pentadecylresorcinol, were identified in ‘Kensington Pride’ mango fruit peel. The alk(en)ylresorcinols had antifungal activity against C. gloeosporioides, as determined from thin layer chromatography bioassays. Soil-applied activators of plant defence (Acibenzolar at 150 mg L-1, and soluble potassium silicate at 200 and 1000 mg L-1) did not influence concentrations of 5-n-heptadecenylresorcinol or 5-n-pentadecyl¬resorcinol in mango peel when applied 2 months after fruit set and one month later. Concentrations of both alk(en)ylresorcinols were high 2 months after fruit set but levels declined by 50% within 1 month (2 months before commercial harvest) and did not change significantly from commercial harvest until eating-ripe.