15 resultados para Appropriation of lands

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantifying the impacts of rehabilitating degraded lands on soil health, pastures, runoff, erosion, nutrient and sediment movement.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This project aims to develop integrated irrigation and nutrition management strategies under limited water for irrigators currently investing in overhead irrigation systems (CPLM) to minimize the learning lag in their use and optimize crop and economic performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The identification of "stay-green" in sorghum and its positive correlation with yield increases has encouraged attempts to incorporate "stay-green"-like traits into the genomes of other commercially important cereal crops. However, knowledge on the effects of "stay-green" expression on grain quality under extreme physiological stress is limited. This study examines impacts of "stay-green"-like expression on starch biosynthesis in barley (Hordeum vulgare L.) grain under mild, severe, and acute water stress conditions induced at anthesis. The proportions of long amylopectin branches and amylose branches in the grain of Flagship (a cultivar without "stay-green"-like characteristics) were higher at low water stress, suggesting that water stress affects starch biosynthesis in grain, probably due to early termination of grain fill. The changes in long branches can affect starch properties, such as the rates of enzymatic degradation, and hence its nutritional value. By contrast, grain from the "stay-green"-like cultivar (ND24260) did not show variation in starch molecular structure under the different water stress levels. The results indicate that the cultivar with "stay-green"-like traits has a greater potential to maintain starch biosynthesis and quality in grain during drought conditions, making the "stay-green"-like traits potentially useful in ensuring food security. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Like all high yielding farming systems nitrogen (N) is a key component to their productivity and profitability and Australian irrigated cotton growers are tending to apply more N than is required for the level of lint yield that is being achieved. This suggests either over application of N or inefficient systems limiting the response of cotton to N inputs. To investigate this four replicated trials were established in commercial fields during the 2014/15 season. The trials were aiming to measure the difference in response of irrigated cotton to the application of N under flood and overhead irrigation systems. The application treatments utilized eight upfront rates of applied N, ranging from 0 N kg/ha to a maximum of 410 kg N/ha, with three of the fours trials receiving a growerdetermined in-crop application of N in the irrigation water. The two flood irrigation systems had lower lint yields from similar levels of N input compared to one of the overhead irrigated sites; the result from the second overhead site was impacted by disease. This paper discusses the response of plant N uptake, lint yield and fertilizer N recovery to N application..

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Service provision project to be undertaken by staff from the Department of Employment, Economic Development and Innovation (DEEDI) to the Flower Association of Queensland Inc. (FAQI) to fulfil FAQI's requirements under the South East Queensland - Irrigation Futures project.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes the employment of two experienced graziers as consultants to apply and evaluate a model for calculating 'safe' long-term grazing capacities of individual properties. The model was based on ecological principles and entailed estimates of average annual forage grown (kglha) on the different land systems on each property and the calculation of the number of livestock (dry sheep equivalents, DSE) required to 'safely' utilise this forage. The grazier consultants applied and evaluated the 'safe' grazing capacity model on 20 properties of their choosing. For evaluation, model results were compared with; (a) the Department of Lands rated carrying capacities for those properties and (b) the grazing capacity assessed independently by the owners of those properties. For the 20 properties, the average 'safe' grazing capacity calculated by the model (21.0 DSE/kmZ) was 8% lighter than the average of the owner assessed capacities (22.7 DSE/kmZ), which in tum was 37% lighter than the average of the pre-1989 Department of Lands rated carrying capacity (31.0 DSE/kmZ). The grazing land management and administrative implications of these results and the role graziers played as consultants are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The availability and quality of irrigation water has become an issue limiting productivity in many Australian vegetable regions. Production is also under competitive pressure from supply chain forces. Producers look to new technologies, including changing irrigation infrastructure, exploring new water sources, and more complex irrigation management, to survive these stresses. Often there is little objective information investigating which improvements could improve outcomes for vegetable producers, and external communities (e.g. meeting NRM targets). This has led to investment in inappropriate technologies, and costly repetition of errors, as business independently discover the worth of technologies by personal experience. In our project, we investigated technology improvements for vegetable irrigation. Through engagement with industry and other researchers, we identified technologies most applicable to growers, particularly those that addressed priority issues. We developed analytical tools for ‘what if’ scenario testing of technologies. We conducted nine detailed experiments in the Lockyer Valley and Riverina vegetable growing districts, as well as case studies on grower properties in southern Queensland. We investigated root zone monitoring tools (FullStop™ wetting front detectors and Soil Solution Extraction Tubes - SSET), drip system layout, fertigation equipment, and altering planting arrangements. Our project team developed and validated models for broccoli, sweet corn, green beans and lettuce, and spreadsheets for evaluating economic risks associated with new technologies. We presented project outcomes at over 100 extension events, including irrigation showcases, conferences, field days, farm walks and workshops. The FullStops™ were excellent for monitoring root zone conditions (EC, nitrate levels), and managing irrigation with poor quality water. They were easier to interpret than the SSET. The SSET were simpler to install, but required wet soil to be reliable. SSET were an option for monitoring deeper soil zones, unsuitable for FullStop™ installations. Because these root zone tools require expertise, and are labour intensive, we recommend they be used to address specific problems, or as a periodic auditing strategy, not for routine monitoring. In our research, we routinely found high residual N in horticultural soils, with subsequently little crop yield response to additional nitrogen fertiliser. With improved irrigation efficiency (and less leaching), it may be timely to re-examine nitrogen budgets and recommendations for vegetable crops. Where the drip irrigation tube was located close to the crop row (i.e. within 5-8 cm), management of irrigation was easier. It improved nitrogen uptake, water use efficiency, and reduced the risk of poor crop performance through moisture stress, particularly in the early crop establishment phases. Close proximity of the drip tube to the crop row gives the producer more options for managing salty water, and more flexibility in taking risks with forecast rain. In many vegetable crops, proximate drip systems may not be cost-effective. The next best alternative is to push crop rows closer to the drip tube (leading to an asymmetric row structure). The vegetable crop models are good at predicting crop phenology (development stages, time to harvest), input use (water, fertiliser), environmental impacts (nutrient, salt movement) and total yields. The two immediate applications for the models are understanding/predicting/manipulating harvest dates and nitrogen movements in vegetable cropping systems. From the economic tools, the major influences on accumulated profit are price and yield. In doing ‘what if’ analyses, it is very important to be as accurate as possible in ascertaining what the assumed yield and price ranges are. In most vegetable production systems, lowering the required inputs (e.g. irrigation requirement, fertiliser requirement) is unlikely to have a major influence on accumulated profit. However, if a resource is constraining (e.g. available irrigation water), it is usually most profitable to maximise return per unit of that resource.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Concerns about excessive sediment loads entering the Great Barrier Reef (GBR) lagoon in Australia have led to a focus on improving ground cover in grazing lands. Ground cover has been identified as an important factor in reducing sediment loads, but improving ground cover has been difficult for reef stakeholders in major catchments of the GBR. To provide better information an optimising linear programming model based on paddock scale information in conjunction with land type mapping was developed for the Fitzroy, the largest of the GBR catchments. This identifies at a catchment scale which land types allow the most sediment reduction to be achieved at least cost. The results suggest that from the five land types modelled, the lower productivity land types present the cheapest option for sediment reductions. The study allows more informed decision making for natural resource management organisations to target investments. The analysis highlights the importance of efficient allocation of natural resource management funds in achieving sediment reductions through targeted land type investments. © 2012.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In irrigated cropping, as with any other industry, profit and risk are inter-dependent. An increase in profit would normally coincide with an increase in risk, and this means that risk can be traded for profit. It is desirable to manage a farm so that it achieves the maximum possible profit for the desired level of risk. This paper identifies risk-efficient cropping strategies that allocate land and water between crop enterprises for a case study of an irrigated farm in Southern Queensland, Australia. This is achieved by applying stochastic frontier analysis to the output of a simulation experiment. The simulation experiment involved changes to the levels of business risk by systematically varying the crop sowing rules in a bioeconomic model of the case study farm. This model utilises the multi-field capability of the process based Agricultural Production System Simulator (APSIM) and is parameterised using data collected from interviews with a collaborating farmer. We found sowing rules that increased the farm area sown to cotton caused the greatest increase in risk-efficiency. Increasing maize area also improved risk-efficiency but to a lesser extent than cotton. Sowing rules that increased the areas sown to wheat reduced the risk-efficiency of the farm business. Sowing rules were identified that had the potential to improve the expected farm profit by ca. $50,000 Annually, without significantly increasing risk. The concept of the shadow price of risk is discussed and an expression is derived from the estimated frontier equation that quantifies the trade-off between profit and risk.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sown pasture rundown and declining soil fertility for forage crops are too serious to ignore with losses in beef production of up to 50% across Queensland. The feasibility of using strategic applications of nitrogen (N) fertiliser to address these losses was assessed by analysing a series of scenarios using data drawn from published studies, local fertiliser trials and expert opinion. While N fertilser can dramatically increase productivity (growth, feed quality and beef production gains of over 200% in some scenarios), the estimated economic benefits, derived from paddock level enterprise budgets for a fattening operation, were much more modest. In the best-performing sown grass scenarios, average gross margins were doubled or tripled at the assumed fertiliser response rates, and internal rates of return of up to 11% were achieved. Using fertiliser on forage sorghum or oats was a much less attractive option and, under the paddock level analysis and assumptions used, forages struggled to be profitable even on fertile sites with no fertiliser input. The economics of nitrogen fertilising on grass pasture were sensitive to the assumed response rates in both pasture growth and liveweight gain. Consequently, targeted research is proposed to re-assess the responses used in this analysis, which are largely based on research 25-40 years ago when soils were generally more fertile and pastures less rundown.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There are many ways in which research messages and findings can be extended to the expansive cotton community. As everyone learns differently it is crucial that information is delivered in a variety of ways to meet the various learning needs of the CottonInfo team’s broad audience. In addition different cotton production areas often require targeted information to address specific challenges. Successful implementation of innovative research outcomes typically relies on a history of cultivated communication between the researcher and the end-user, the grower. The CottonInfo team, supported by a joint venture between Cotton Seed Distributors, Cotton Research Development Corporation, Cotton Australia and other collaborative partners, represents a unique model of extension in Australian agriculture. Industry research is extended via regionally based Regional Development Officers backed by support from Technical Specialists. The 2015 Cotton Irrigation Technology Tour is one example of a successful CottonInfo capacity building activity. This tour took seven CRDC funded irrigation-specific researchers to Emerald, Moree and Nevertire to showcase their research and technologies. These events provided irrigators and consultants with the opportunity to hear first-hand from researchers about their technologies and how they could be applied onfarm. This tour was an example of how the CottonInfo team can connect growers and researchers, not only to provide an avenue for growers to learn about the latest irrigation research, but for researchers to receive feedback about their current and future irrigation research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Composts can provide a source of organic carbon and nutrients for soil biota and increase soil fertility as well as provide other biological and structural benefits hence compost addition to cotton soils is seen as a way to improve cotton soil biological health and fertility. In a six month incubation experiment we analysed the changes in microbial populations and activities related to C and N cycling following the application of feedlot, poultry manure and gin trash compost materials. A significant variation in the chemical composition, e.g. major nutrients and trace elements, was found between the three compost products. The feedlot compost generally contained higher levels of dissolved organic carbon, total nitrogen and bicarbonate extractable phosphorus whereas the Gin trash compost had lower carbon and nutrient concentrations. The effect of compost addition @ 5 and 10t/ha generally increased microbial activity but the effect was only evident during the first two weeks of incubation. Composts effects on the abundance of total bacteria (16S), nitrifying (amoA), nitrogen fixing (nifH) and denitrifying bacteria (nosZ) and total fungi (ITS gene) varied between different composts. The addition of feedlot and poultry compost material significantly increased the levels of dissolved organic carbon (DOC) and nitrogen (DON) in soil compared to that in control soils while ‘Gin trash’ compost had no effect. These differences reflected in the microbial catabolic diversity changes in the compost amended soils. Therefore, chemical analysis of the compost material before application is recommended to more fully consider its’ potential benefits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Macadamias, adapted to the fringes of subtropical rainforests of coastal, eastern Australia, are resilient to mild water stress. Even after prolonged drought, it is difficult to detect stress in commercial trees. Despite this, macadamia orchards in newer irrigated regions produce more consistent crops than those from traditional, rain-fed regions. Crop fluctuations in the latter tend to follow rainfall patterns. The benefit of irrigation in lower rainfall areas is undisputed, but there are many unanswered questions about the most efficient use of irrigation water. Water is used more efficiently when it is less readily available, causing partial stomatal closure that restricts transpiration more than it restricts photosynthesis. Limited research suggests that macadamias can withstand mild stress. In fact, water use efficiency can be increased by strategic deficit irrigation. However, macadamias are susceptible to stress during oil accumulation. There may be benefits of applying more water at critical times, less at others, and this may vary with cultivar. Currently, it is common for macadamia growers to apply about 20-40 L tree-1 day-1 of water to their orchards in winter and 70-90 L tree-1 day-1 in summer. Research reported water use at 20-30 L tree-1 day-1 during winter and 40-50 L tree-1 day-1 in summer using the Granier sap flow technique. The discrepancy between actual water use and farmer practice may be due to water loss via evaporation from the ground, deep drainage and/or greater transpiration due to luxury water consumption. More irrigation research is needed to develop efficient water use and to set practical limits for deficit irrigation management.