2 resultados para Antonin Artaud. Performatic Staging. Performance. Infection.

em eResearch Archive - Queensland Department of Agriculture


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of fungal endophyte (Neotyphodium lolii) infection on the performance of perennial ryegrass (Lolium perenne) growing under irrigation in a subtropical environment was investigated. Seed of 4 cultivars, infected with standard (common toxic or wild-type) endophyte or the novel endophyte AR1, or free of endophyte (Nil), was sown in pure swards, which were fertilised with 50 kg N/ha.month. Seasonal and total yield, persistence, and rust susceptibility were assessed over 3 years, along with details of the presence of endophyte and alkaloids in plant shoots. Endophyte occurrence in tillers in both the standard and AR1 treatments was above 95% for Bronsyn and Impact throughout and rose to that level in Samson by the end of the second year. Meridian AR1 only reached 93% while, in the standard treatment, the endophyte had mostly died before sowing. Nil Zendophyte treatments carried an average of ?0.6% infection throughout. Infection of the standard endophyte was associated with increased dry matter (DM) yields in all 3 years compared with no endophyte. AR1 also significantly increased yields in the second and third years. Over the full 3 years, standard and AR1 increased yields by 18% and 11%, respectively. Infection with both endophytes was associated with increased yields in all 4 seasons, the effects increasing in intensity over time. There was 27% better persistence in standard infected plants compared with Nil at the end of the first year, increasing to 198% by the end of the experiment, while for AR1 the improvements were 20 and 134%, respectively. The effect of endophyte on crown rust (Puccinia coronata) infection was inconsistent, with endophyte increasing rust damage on one occasion and reducing it on another. Cultivar differences in rust infection were greater than endophyte effects. Plants infected with the AR1 endophyte had no detectable ergovaline or lolitrem B in leaf, pseudostem, or dead tissue. In standard infected plants, ergovaline and lolitrem B were highest in pseudostem and considerably lower in leaf. Dead tissue had very low or no detectable ergovaline but high lolitrem B concentrations. Peramine concentration was high and at similar levels in leaf and pseudostem, but not detectable in dead material. Concentration was similar in both AR1 and standard infected plants. Endophyte presence appeared to have a similar effect in the subtropics as has been demonstrated in temperate areas, in terms of improving yields and persistence and increasing tolerance of plants to stress factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A key driver of Australian sweetpotato productivity improvements and consumer demand has been industry adoption of disease-free planting material systems. On a farm isolated from main Australian sweetpotato areas, virus-free germplasm is annually multiplied, with subsequent 'pathogen-tested' (PT) sweetpotato roots shipped to commercial Australian sweetpotato growers. They in turn plant their PT roots into specially designated plant beds, commencing in late winter. From these beds, they cut sprouts as the basis for their commercial fields. Along with other intense agronomic practices, this system enables Australian producers to achieve worldRSQUOs highest commercial yields (per hectare) of premium sweetpotatoes. Their industry organisation, ASPG (Australian Sweetpotato Growers Inc.), has identified productivity of mother plant beds as a key driver of crop performance. Growers and scientists are currently collaborating to investigate issues such as catastrophic plant beds losses; optimisation of irrigation and nutrient addition; rapidity and uniformity of initial plant bed harvests; optimal plant bed harvest techniques; virus re-infection of plant beds; and practical longevity of plant beds. A survey of 50 sweetpotato growers in Queensland and New South Wales identified a substantial diversity in current plant bed systems, apparently influenced by growing district, scale of operation, time of planting, and machinery/labour availability. Growers identified key areas for plant bed research as: optimising the size and grading specifications of PT roots supplied for the plant beds; change in sprout density, vigour and performance through sequential cuttings of the plant bed; optimal height above ground level to cut sprouts to maximise commercial crop and plant bed performance; and use of structures and soil amendments in plant bed systems. Our ongoing multi-disciplinary research program integrates detailed agronomic experiments, grower adaptive learning sites, product quality and consumer research, to enhance industry capacity for inspired innovation and commercial, sustainable practice change.