138 resultados para Antimicrobial Resistance
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Objectives: The aim of this study was to determine the antimicrobial resistance patterns of 125 Campylobacter jejuni and 27 Campylobacter coli isolates from 39 Queensland broiler farms. Methods: Two methods, a disc diffusion assay and an agar-based MIC assay, were used. The disc diffusion was performed and interpreted as previously described (Huysmans MB, Turnidge JD. Disc susceptibility testing for thermophilic campylobacters. Pathology 1997; 29: 209–16), whereas the MIC assay was performed according to CLSI (formerly NCCLS) methods and interpreted using DANMAP criteria. Results: In both assays, no C. jejuni or C. coli isolates were resistant to ciprofloxacin or chloramphenicol, no C. coli were resistant to nalidixic acid, and no C. jejuni were resistant to erythromycin. In the MIC assay, no C. jejuni isolate was resistant to nalidixic acid, whereas three isolates (2.4%) were resistant in the disc assay. The highest levels of resistance of the C. jejuni isolates were recorded for tetracycline (19.2% by MIC and 18.4% by disc) and ampicillin (19.2% by MIC and 17.6% by disc). The C. coli isolates gave very similar results (tetracycline resistance 14.8% by both MIC and disc; ampicillin resistance 7.4% by MIC and 14.8% by disc). Conclusions: This work has shown that the majority of C. jejuni and C. coli isolates were susceptible to the six antibiotics tested by both disc diffusion and MIC methods. Disc diffusion represents a suitable alternative methodology to agar-based MIC methods for poultry Campylobacter isolates.
Resumo:
This study investigated antimicrobial resistance traits, clonal relationships and epidemiology of Histophilus somni isolated from clinically affected cattle in Queensland and New South Wales, Australia. Isolates (n = 53) were subjected to antimicrobial susceptibility testing against six antimicrobial agents (ceftiofur, enrofloxacin, florfenicol, tetracycline, tilmicosin and tulathromycin) using disc diffusion and minimum inhibitory concentration (MIC) assays. Clonal relationships were assessed using repetitive sequence PCR and descriptive epidemiological analysis was performed. The H. somni isolates appeared to be geographically clonal, with 27/53 (47%) isolates grouping in one cluster from one Australian state. On the basis of disc diffusion, 34/53 (64%) isolates were susceptible to all antimicrobial agents tested; there was intermediate susceptibility to tulathromycin in 12 isolates, tilmicosin in seven isolates and resistance to tilmicosin in one isolate. Using MIC, all but one isolate was susceptible to all antimicrobial agents tested; the non-susceptible isolate was resistant to tetracycline, but this MIC result could not be compared to disc diffusion, since there are no interpretative guidelines for disc diffusion for H. somni against tetracycline. In this study, there was little evidence of antimicrobial resistance in H. somni isolates from Australian cattle. Disc diffusion susceptibility testing results were comparable to MIC results for most antimicrobial agents tested; however, results for isolates with intermediate susceptibility or resistance to tilmicosin and tulathromycin on disc diffusion should be interpreted with caution in the absence of MIC results.
Resumo:
Antimicrobial resistance in bacterial porcine respiratory pathogens has been shown to exist in many countries. However, little is known about the variability in antimicrobial susceptibility within a population of a single bacterial respiratory pathogen on a pig farm. This study examined the antimicrobial susceptibility of Actinobacillus pleuropneumoniae using multiple isolates within a pig and across the pigs in three different slaughter batches. Initially, the isolates from the three batches were identified, serotyped, and subsample genotyped. All the 367 isolates were identified as A. pleuropneumoniae serovar 1, and only a single genetic profile was detected in the 74 examined isolates. The susceptibility of the 367 isolates of A. pleuropneumoniae to ampicillin, tetracycline and tilmicosin was determined by a disc diffusion technique. For tilmicosin, the three batches were found to consist of a mix of susceptible and resistant isolates. The zone diameters of the three antimicrobials varied considerably among isolates in the second sampling. In addition, the second sampling provided statistically significant evidence of bimodal populations in terms of zone diameters for both tilmicosin and ampicillin. The results support the hypothesis that the antimicrobial susceptibility of one population of a porcine respiratory pathogen can vary within a batch of pigs on a farm.
Resumo:
This study aimed to define the frequency of resistance to critically important antimicrobials (CIAs) [i.e. extended-spectrum cephalosporins (ESCs), fluoroquinolones (FQs) and carbapenems] among Escherichia coli isolates causing clinical disease in Australian food-producing animals. Clinical E. coli isolates (n = 324) from Australian food-producing animals [cattle (n = 169), porcine (n = 114), poultry (n = 32) and sheep (n = 9)] were compiled from all veterinary diagnostic laboratories across Australia over a 1-year period. Isolates underwent antimicrobial susceptibility testing to 18 antimicrobials using the Clinical and Laboratory Standards Institute disc diffusion method. Isolates resistant to CIAs underwent minimum inhibitory concentration determination, multilocus sequence typing (MLST), phylogenetic analysis, plasmid replicon typing, plasmid identification, and virulence and antimicrobial resistance gene typing. The 324 E. coli isolates from different sources exhibited a variable frequency of resistance to tetracycline (29.0–88.6%), ampicillin (9.4–71.1%), trimethoprim/sulfamethoxazole (11.1–67.5%) and streptomycin (21.9–69.3%), whereas none were resistant to imipenem or amikacin. Resistance was detected, albeit at low frequency, to ESCs (bovine isolates, 1%; porcine isolates, 3%) and FQs (porcine isolates, 1%). Most ESC- and FQ-resistant isolates represented globally disseminated E. coli lineages (ST117, ST744, ST10 and ST1). Only a single porcine E. coli isolate (ST100) was identified as a classic porcine enterotoxigenic E. coli strain (non-zoonotic animal pathogen) that exhibited ESC resistance via acquisition of blaCMY-2. This study uniquely establishes the presence of resistance to CIAs among clinical E. coli isolates from Australian food-producing animals, largely attributed to globally disseminated FQ- and ESC-resistant E. coli lineages.
Resumo:
Susceptibilities of predominantly Australian isolates of the pathogenic intestinal spirochaetes Brachyspira intermedia (n=25) and Brachyspira pilosicoli (n=17) from chickens were tested in agar dilution against four concentrations each of the antimicrobials tiamulin, lincomycin, tylosin, metronidazole, tetracycline and ampicillin. Based on available minimum inhibitory concentration (MIC) breakpoint values for Brachyspira hyodysenteriae or other Gram-negative enteric veterinary pathogens, isolates of both species generally were susceptible to tiamulin, lincomycin, metronidazole and tetracycline. Although not classed as resistant, four isolates of B. intermedia had an elevated MIC range for tiamulin (1 to 4 mg/l), 11 isolates of B. intermedia and five of B. pilosicoli had an elevated MIC range for lincomycin (10 to 50 mg/l), one isolate of B. pilosicoli had an elevated MIC range for tetracycline (10 to 20 mg/l), and one isolate of B. intermedia and five of B. pilosicoli had an elevated MIC range for ampicillin (10 to 50 mg/l). A clear lack of susceptibility to tylosin (MIC >4 mg/l) was seen in 11 isolates each of B. intermedia and B. pilosicoli, and to ampicillin (MIC >32 mg/l) in two isolates of B. pilosicoli. These data suggest that some resistance to common antimicrobials exists among intestinal spirochetes obtained from laying hens and supports the need of MIC data for clinical isolates before any treatment is considered.
Resumo:
Fortunately, plants have developed highly effective mechanisms with which to defend themselves when attacked by potentially disease-causing microorganisms. If not, then they would succumb to the many pathogenic fungi, bacteria, viruses, nematodes and insect pests, and disease would prevail. These natural defence systems of plants can be deliberately activated to provide some protection against the major pathogens responsible for causing severe yield losses in agricultural and horticultural crops. This is the basis of what is known as ‘induced’ or ‘acquired’ disease resistance in plants. Although the phenomenon of induced resistance has been known amongst plant pathologists for over 100 years, its inclusion into pest and disease management programmes has been a relatively recent development, ie. within the last 5 years. This review will discuss very briefly some of the characteristics of the induced resistance phenomenon, outline some of the advantages and limitations to its implementation and provide some examples within a postharvest pathology context. Finally some approaches being investigated by the fruit pathology team at DPI Indooroopilly and collaborators will be outlined.
Resumo:
Resistance to phosphine was characterised in strains of rice weevil, Sirophilus oryzae, and the psocids Liposcelis entomophila and L. decolor from China and Australia. Mixed-age cultures (containing all life stages) of insects were tested using a flow-through apparatus. The criterion of response was 'time to population extinction' defined as the exposure period, in days, at which 100% mortality of adults and no live progeny were achieved. Chinese S. oryzae took 11 and 7 days for population extinction at 200 and 700 ppm phosphine, respectively, compared with the Australian strain, which was controlled in 7 and 5 days, respectively. Similarly, the Chinese strains L. Enfornophila and L. decolor were generally more difficult to control than the corresponding Australian strains. The Chinese strains of L. decolor showed resistance levels stronger than any grain storage insect pest species so far detected in Australia. This research allows us to evaluate the likely significance of potential new resistance to the Australian grain industry and to prepare effective fumigation dosages and resistance management strategies to combat new strong resistances before they emerge here.
Resumo:
The inheritance of resistance to root-lesion nematode was investigated in five synthetic hexaploid wheat lines and two bread wheat lines using a half-diallel design of F1 and F2 crosses. The combining ability of resistance genes in the synthetic hexaploid wheat lines was compared with the performance of the bread wheat line 'GS50a', the source of resistance to Pratylenchus thornei used in Australian wheat breeding programmes. Replicated glasshouse trials identified P. thornei resistance as polygenic and additive in gene action. General combining ability (GCA) of the parents was more important than specific combining ability (SCA) effects in the inheritance of P. thornei resistance in both F1 and F2 populations. The synthetic hexaploid wheat line 'CPI133872' was identified as the best general combiner, however, all five synthetic hexaploid wheat lines possessed better GCA than 'GS50a'. The synthetic hexaploid wheat lines contain novel sources of P. thornei resistance that will provide alternative and more effective sources of resistance to be utilized in wheat breeding programmes
Resumo:
As part of a comparative mapping study between sugarcane and sorghum, a sugarcane cDNA clone with homology to the maize Rp1-D rust resistance gene was mapped in sorghum. The cDNA probe hybridised to multiple loci, including one on sorghum linkage group (LG) E in a region where a major rust resistance QTL had been previously mapped. Partial sorghum Rp1-D homologues were isolated from genomic DNA of rust-resistant and -susceptible progeny selected from a sorghum mapping population. Sequencing of the Rp1-D homologues revealed five discrete sequence classes: three from resistant progeny and two from susceptible progeny. PCR primers specific to each sequence class were used to amplify products from the progeny and confirmed that the five sequence classes mapped to the same locus on LG E. Cluster analysis of these sorghum sequences and available sugarcane, maize and sorghum Rp1-D homologue sequences showed that the maize Rp1-D sequence and the partial sugarcane Rp1-D homologue were clustered with one of the sorghum resistant progeny sequence classes, while previously published sorghum Rp1-D homologue sequences clustered with the susceptible progeny sequence classes. Full-length sequence information was obtained for one member of a resistant progeny sequence class ( Rp1-SO) and compared with the maize Rp1-D sequence and a previously identified sorghum Rp1 homologue ( Rph1-2). There was considerable similarity between the two sorghum sequences and less similarity between the sorghum and maize sequences. These results suggest a conservation of function and gene sequence homology at the Rp1 loci of maize and sorghum and provide a basis for convenient PCR-based screening tools for putative rust resistance alleles in sorghum.
Resumo:
Degree of dominance of phosphine resistance was investigated in adults of Rhyzopertha dominica F and Sitophilus oryzae L. Efficacy of the grain fumigant phosphine depends on both concentration and exposure period, which raises the possibility that dominance levels vary with exposure period. New and published data were used to test this possibility in adults of R dominica and S oryzae fumigated for periods of up to 144 h. The concentrations required for control of homozygous resistant and susceptible strains and their F1 hybrids decreased with increasing exposure period. For both species the response lines for the homozygous resistant and susceptible strains and their F1 hybrids were parallel. Therefore, neither dominance level nor resistance factor was affected by exposure period. Resistance was incompletely recessive and the level of dominance, calculated at 50% mortality level, was -0.59 for R dominica and -0.65 for S oryzae. The resistant R dominica strain was 30.9 times more resistant than the susceptible strain, compared with 8.9 times for the resistant S oryzae strain. The results suggest that developing discriminating doses for detecting heterozygote adults of either species will be difficult.
Resumo:
The widespread and increasing resistance of internal parasites to anthelmintic control is a serious problem for the Australian sheep and wool industry. As part of control programmes, laboratories use the Faecal Egg Count Reduction Test (FECRT) to determine resistance to anthelmintics. It is important to have confidence in the measure of resistance, not only for the producer planning a drenching programme but also for companies investigating the efficacy of their products. The determination of resistance and corresponding confidence limits as given in anthelmintic efficacy guidelines of the Standing Committee on Agriculture (SCA) is based on a number of assumptions. This study evaluated the appropriateness of these assumptions for typical data and compared the effectiveness of the standard FECRT procedure with the effectiveness of alternative procedures. Several sets of historical experimental data from sheep and goats were analysed to determine that a negative binomial distribution was a more appropriate distribution to describe pre-treatment helminth egg counts in faeces than a normal distribution. Simulated egg counts for control animals were generated stochastically from negative binomial distributions and those for treated animals from negative binomial and binomial distributions. Three methods for determining resistance when percent reduction is based on arithmetic means were applied. The first was that advocated in the SCA guidelines, the second similar to the first but basing the variance estimates on negative binomial distributions, and the third using Wadley’s method with the distribution of the response variate assumed negative binomial and a logit link transformation. These were also compared with a fourth method recommended by the International Co-operation on Harmonisation of Technical Requirements for Registration of Veterinary Medicinal Products (VICH) programme, in which percent reduction is based on the geometric means. A wide selection of parameters was investigated and for each set 1000 simulations run. Percent reduction and confidence limits were then calculated for the methods, together with the number of times in each set of 1000 simulations the theoretical percent reduction fell within the estimated confidence limits and the number of times resistance would have been said to occur. These simulations provide the basis for setting conditions under which the methods could be recommended. The authors show that given the distribution of helminth egg counts found in Queensland flocks, the method based on arithmetic not geometric means should be used and suggest that resistance be redefined as occurring when the upper level of percent reduction is less than 95%. At least ten animals per group are required in most circumstances, though even 20 may be insufficient where effectiveness of the product is close to the cut off point for defining resistance.
Resumo:
Peanut (Arachis hypogaea L.) lines exhibiting high levels of resistance to peanut stripe virus (PStV) were obtained following microprojectile bombardment of embryogenic callus derived from mature seeds. Fertile plants of the commercial cultivars Gajah and NC7 were regenerated following co-bombardmentwith the hygromycin resistance gene and one of two forms of the PStV coat protein (CP) gene, an untranslatable, full length sequence (CP2) or a translatable gene encoding a CP with an N-terminal truncation (CP4). High level resistance to PStV was observed for both transgenes when plants were challenged with the homologous virus isolate. The mechanism of resistance appears to be RNA-mediated, since plants carrying either the untranslatable CP2 or CP4 had no detectable protein expression, but were resistant or immune (no virus replication). Furthermore, highly resistant, but not susceptible CP2 T0 plants contained transgene-specific small RNAs. These plants now provide important germplasm for peanut breeding, particularly in countries where PStV is endemic and poses a major constraint to peanut production.
Resumo:
Strawberry runner production areas in Queensland are assessed for the presence of Pratylenchus vulnus (lesion nematode) and Meloidogyne hapla (root-knot nematode) as part of the approval process for sites used in runner production under the approved runner scheme. M. hapla is known to infest strawberry. The ability of three other Meloidogyne species occurring in Queensland to infest this host was investigated. The species M. arenaria, M. incognita and M. javanica, in addition to M. hapla, were able to reproduce on strawberry roots of the cultivar 'Joy', which sustained higher nematode reproduction rates than 'Jewel' and 'Sweet Charlie'. The ability of species other than M. hapla to infest strawberry needs to be recognised in site selection for runner production, and in screening cultivars for resistance to nematodes.
Resumo:
Laboratory experiments were conducted to determine the efficacy of spinosad (a biopesticide), chlorpyrifos-methyl (an organophosphorus compound (OP)) and s-methoprene (a juvenile hormone analogue) applied alone and in binary combinations against five stored-grain beetles in wheat. There were three strains of Rhyzopertha dominica, and one strain each of Sitophilus oryzae, Tribolium castaneum, Oryzaephilus surinamensis and Cryptolestes ferrugineus. These strains were chosen to represent a range of possible resistant genotypes, exhibiting resistance to organophosphates, pyrethroids or methoprene. Treatments were applied at rates that are registered or likely to be registered in Australia. Adults were exposed to freshly treated wheat for 2 weeks, and the effects of treatments on mortality and reproduction were determined. No single protectant or protectant combination controlled all insect strains, based on the criterion of >99% reduction in the number of live F1 adults relative to the control. The most effective combinations were spinosad at 1 mg kg-1+chlorpyrifos-methyl at 10 mg kg-1 which controlled all strains except for OP-resistant O. surinamensis, and chlorpyrifos-methyl at 10 mg kg-1+s-methoprene at 0.6 mg kg-1 which controlled all strains except for methoprene-resistant R. dominica. The results of this study demonstrate the difficulty in Australia, and potentially other countries which use protectants, of finding protectant treatments to control a broad range of pest species in the face of resistance development.
Resumo:
Sorghum ergot, caused predominantly by Claviceps africana Frederickson, Mantle, de Milliano, is a significant threat to the sorghum industry worldwide. The objectives of this study were firstly, to identify molecular markers linked to ergot resistance and to two pollen traits, pollen quantity (PQ) and pollen viability (PV), and secondly, to assess the relationship between the two pollen traits and ergot resistance in sorghum. A genetic linkage map of sorghum RIL population R931945-2-2 x IS 8525 (resistance source) was constructed using 303 markers including 36 SSR, 117 AFLP™, 148 DArT™ and two morphological trait loci. Composite interval mapping identified nine, five, and four QTL linked to molecular markers for percentage ergot infection (PCERGOT), PQ and PV, respectively, at a LOD >2.0. Co-location/linkage of QTL were identified on four chromosomes while other QTL for the three traits mapped independently, indicating that both pollen and non pollen-based mechanisms of ergot resistance were operating in this sorghum population. Of the nine QTL identified for PCERGOT, five were identified using the overall data set while four were specific to the group data sets defined by temperature and humidity. QTL identified on SBI-02 and SBI-06 were further validated in additional populations. This is the first report of QTL associated with ergot resistance in sorghum. The markers reported herein could be used for marker-assisted selection for this important disease of sorghum.