2 resultados para Antigen-presenting
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Improved strategies are urgently required to control infections with enterohemorrhagic Escherichia coli and enteropathogenic E. coli, two dominant zoonotic enteric pathogens responsible for a wide spectrum of illnesses as well as deaths of human being, with tremendous financial cost worldwide. The present study investigates the capacity of two clay nanoparticles (NPs) with opposite surface charges, namely synthetic layered double hydroxide (LDH) and hectorite (HEC) NPs as adjuvants to promote strong immune responses against the infections. Here both LDH and HEC NPs are showed to be able to carry an appreciable amount of Intimin β (1.1 and 4.4 mg per mg clay nanomaterials, respectively) and significantly facilitate antigen uptake by antigen-presenting cells. Remarkably, these clay NPs induce strong antibody and cell-mediated immune responses, which are much higher than that by the potent adjuvant, QuilA. Furthermore, these strong immune responses are well maintained for at least four months in the mouse model, during which there are no changes in histopathology of the animal organs. Collectively these data demonstrate the suitability of LDH and HEC NPs as useful adjuvants in new-generation vaccine formulations to control various infectious diseases.
Resumo:
Amino functionalised mesoporous silica nanoparticles (AM-41) have been identified as a promising vaccine delivery material. The capacity of AM-41 to stabilise vaccine components at ambient temperature (23–27 °C) was determined by adsorbing the model antigen ovalbumin (OVA) to AM-41 particles (OVA-41). The OVA-41 was successfully freeze-dried using the excipients 5% trehalose and 1% PEG8000. Both the immunological activity of OVA and the nanoparticle structure were maintained following two months storage at ambient temperature. The results of immunisation studies in mice with reconstituted OVA-41 demonstrated the induction of humoral and cell-meditated immune responses. The capacity of AM-41 particles to facilitate ambient storage of vaccine components without loss of immunological potency will underpin the further development of this promising vaccine delivery platform.