2 resultados para Angelus Silesius, 1624-1677.

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because of the variable and changing environment, advisors and farmers are seeking systems that provide risk management support at a number of time scales. The Agricultural Production Systems Research Unit, Toowoomba, Australia has developed a suite of tools to assist advisors and farmers to better manage risk in cropping. These tools range from simple rainfall analysis tools (Rainman, HowWet, HowOften) through crop simulation tools (WhopperCropper and YieldProphet) to the most complex, APSFarm, a whole-farm analysis tool. Most are derivatives of the APSIM crop model. These tools encompass a range of complexity and potential benefit to both the farming community and for government policy. This paper describes, the development and usage of two specific products; WhopperCropper and APSFarm. WhopperCropper facilitates simulation-aided discussion of growers' exposure to risk when comparing alternative crop input options. The user can readily generate 'what-if' scenarios that separate the major influences whilst holding other factors constant. Interactions of the major inputs can also be tested. A manager can examine the effects of input levels (and Southern Oscillation Index phase) to broadly determine input levels that match their attitude to risk. APSFarm has been used to demonstrate that management changes can have different effects in short and long time periods. It can be used to test local advisors and farmers' knowledge and experience of their desired rotation system. This study has shown that crop type has a larger influence than more conservative minimum soil water triggers in the long term. However, in short term dry periods, minimum soil water triggers and maximum area of the various crops can give significant financial gains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cattle tick, Rhipicephalus (Boophilus) microplus, and the diseases it transmits pose a persistent threat to tropical beef production. Genetic selection of host resistance has become the method of choice for non-chemical control of cattle tick. Previous studies have suggested that larval stages are most susceptible to host resistance mechanisms. To gain insights into the molecular basis of host resistance that occurs during R. microplus attachment, we assessed the abundance of proteins (by isobaric tag for relative and absolute quantitation (iTRAQ) and Western blot analyses) and mRNAs (by quantitative reverse transcription PCR (qRT-PCR)) in skin adjacent to tick bite sites from high tick-resistant (HR) and low tick-resistant (LR) Belmont Red cattle following challenge with cattle tick. We showed substantially higher expression of the basal epidermal keratins KRT5 and KRT14, the lipid processing protein, lipocalin 9 (LCN9), the epidermal barrier catalysing enzyme transglutaminase 1 (TGM1), and the transcriptional regulator B lymphocyte-induced maturation protein 1 (Blimp1) in HR skin. Our data reveals the essential role of the epidermal permeability barrier in conferring greater resistance of cattle to tick infestation, and suggest that the physical structure of the epidermal layers of the skin may represent the first line of defence against ectoparasite invasion. Crown Copyright. © Australian Society for Parasitology Inc.