6 resultados para Analysis of growth
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The growth of three cohorts of captive reared cobia, grown in a combination of flow-though and recirculating aquaculture systems, was progressively measured to determine the existence and extent of sexually dimorphic growth in cobia. Approximately 100 fish from each cohort were individually identified and regularly weighed until the average weight of the fish was approximately 5 kg. The sex of individuals was determined through gonadal observations at the conclusion of each trial and the gender fitted retrospectively to the growth data set. Intersex gonads were observed in the first two cohorts of cobia, with 16.9% incidence in cohort 1 and 6.8% in cohort 2. Cobia is considered a gonochoristic species. This was the first reported observation of intersex gonads in cobia and the first reported occurrence of intersex gonads from a gonochoristic fish species from Australian waters. Only one fish out of the 182 examined in the third cohort was identified as intersex. There was no sexually dimorphic growth in cobia when there was a relatively high incidence of the intersex anomaly, as seen in the first two cohorts of fish. In the relative absence of the intersex condition, female cobia was significantly larger than males from 2 kg onwards. The weight of female cobia was almost 30% more than that of males at 17 months of age when average weight of the cohort was 4.6 kg. It is likely that the first two cobia cohorts were exposed to endocrine disruption in some form, and the possible sources are discussed. Statement of relevance This study demonstrated that female cobia grow significantly faster than male fish and that investigations into monosex culture could lead to significant productivity gains for cobia aquaculture. It also demonstrated that cohorts containing intersex fish did not exhibit sexually dimorphic growth. It is likely that the reproductive anomaly is the result of disruption to the endocrine system.
Resumo:
The Davis Growth Model (a dynamic steer growth model encompassing 4 fat deposition models) is currently being used by the phenotypic prediction program of the Cooperative Research Centre (CRC) for Beef Genetic Technologies to predict P8 fat (mm) in beef cattle to assist beef producers meet market specifications. The concepts of cellular hyperplasia and hypertrophy are integral components of the Davis Growth Model. The net synthesis of total body fat (kg) is calculated from the net energy available after accounting tor energy needs for maintenance and protein synthesis. Total body fat (kg) is then partitioned into 4 fat depots (intermuscular, intramuscular, subcutaneous, and visceral). This paper reports on the parameter estimation and sensitivity analysis of the DNA (deoxyribonucleic acid) logistic growth equations and the fat deposition first-order differential equations in the Davis Growth Model using acslXtreme (Hunstville, AL, USA, Xcellon). The DNA and fat deposition parameter coefficients were found to be important determinants of model function; the DNA parameter coefficients with days on feed >100 days and the fat deposition parameter coefficients for all days on feed. The generalized NL2SOL optimization algorithm had the fastest processing time and the minimum number of objective function evaluations when estimating the 4 fat deposition parameter coefficients with 2 observed values (initial and final fat). The subcutaneous fat parameter coefficient did indicate a metabolic difference for frame sizes. The results look promising and the prototype Davis Growth Model has the potential to assist the beef industry meet market specifications.
Resumo:
A typical barley (Hordeum vulgare) floret consists of reproductive organs three stamens and a pistil, and non-reproductive organs-lodicules and two floral bracts, abaxial called 'lemma' and adaxial 'palea'. The floret is subtended by two additional bracts called outer or empty glumes. Together these organs form the basic structural unit of the grass inflorescence, a spikelet. There are commonly three spikelets at each rachis (floral stem of the barley spike) node, one central and two lateral spikelets. Rare naturally occurring or induced phenotypic variants that contain a third bract subtending the central spikelets have been described in barley. The gene responsible for this phenotype was called the THIRD OUTER GLUME1 (Trd1). The Trd1 mutants fail to suppress bract growth and as a result produce leaf-like structures that subtend each rachis node in the basal portion of the spike. Also, floral development at the collar is not always suppressed. In rice and maize, recessive mutations in NECK LEAF1 (Nl1) and TASSEL SHEATH1 (Tsh1) genes, respectively, have been shown to be responsible for orthologous phenotypes. Fine mapping of the trd1 phenotype in an F-3 recombinant population enabled us to position on the long arm of chromosome 1H to a 10 cM region. We anchored this to a conserved syntenic region on rice chromosome Os05 and selected a set of candidate genes for validation by resequencing PCR amplicons from a series of independent mutant alleles. This analysis revealed that a GATA transcription factor, recently proposed to be Trd1, contained mutations in 10 out of 14 independent trd1 mutant alleles that would generate non-functional TRD1 proteins. Together with genetic linkage data, we confirm the identity of Trd1 as the GATA transcription factor ortholog of rice Nl1 and maize Tsh1 genes.
Resumo:
The effects of plant growth conditions on concentrations of proteins, including allergens, in peanut (Arachis hypogaea L.) kernels are largely unknown. Peanuts (cv. Walter) were grown at five sites (Taabinga, Redvale, Childers, Bundaberg, and Kairi) covering three commercial growing regions in Queensland, Australia. Differences in temperature, rainfall, and solar radiation during the growing season were evaluated. Kernel yield varied from 2.3 t/ha (Kairi) to 3.9 t/ha (Childers), probably due to differences in solar radiation. Crude protein appeared to vary only between Kairi and Childers, whereas Ara h 1 and 2 concentrations were similar in all locations. 2D-DIGE revealed significant differences in spot volumes for only two minor protein spots from peanuts grown in the five locations. Western blotting using peanut-allergic serum revealed no qualitative differences in recognition of antigens. It was concluded that peanuts grown in different growing regions in Queensland, Australia, had similar protein compositions and therefore were unlikely to show differences in allergenicity.
Resumo:
Commercial environments may receive only a fraction of expected genetic gains for growth rate as predicted from the selection environment. This fraction is result of undesirable genotype-by-environment interactions (GxE) and measured by the genetic correlation (rg) of growth between environments. Rapid estimates of genetic correlation achieved in one generation are notoriously difficult to estimate with precision. A new design is proposed where genetic correlations can be estimated by utilising artificial mating from cryopreserved semen and unfertilised eggs stripped from a single female. We compare a traditional phenotype analysis of growth to a threshold model where only the largest fish are genotyped for sire identification. The threshold model was robust to differences in family mortality differing up to 30%. The design is unique as it negates potential re-ranking of families caused by an interaction between common maternal environmental effects and growing environment. The design is suitable for rapid assessment of GxE over one generation with a true 0.70 genetic correlation yielding standard errors as low as 0.07. Different design scenarios were tested for bias and accuracy with a range of heritability values, number of half-sib families created, number of progeny within each full-sib family, number of fish genotyped, number of fish stocked, differing family survival rates and at various simulated genetic correlation levels.
Resumo:
Processing Australian hardwood plantations into rotary veneer can produce more acceptable marketable product recoveries compared to traditional processing techniques (e.g. sawmilling). Veneers resulting from processing trials from six commercially important Australian hardwood species were dominated by D-grade veneer. Defects such as encased knots, gum pockets, gum veins, surface roughness, splits, bark pockets, and decay impacted the final assigned grade. Four grading scenarios were adopted. The first included a change to the grade limitations for gum pockets and gum veins, while the second investigated the potential impact of effective pruning on grade recovery. Although both scenarios individually had a positive impact on achieving higher face grade veneer qualities, the third and fourth scenarios, which combined both, had a substantial impact, with relative veneer values increasing up to 18.2% using conservative calculations (scenario three) or up to 22.6% (scenario four) where some of the upgraded veneers were further upgraded to A-grade, which attracts superior value. The total change in veneer value was found to depend on the average billet diameter unless defects other than those relating to the scenarios (gum or knots) restricted the benefit of pruning and gum upgrading. This was the case for species prone to high levels of growth stress and related defects.