7 resultados para Analysis and evaluation of environmental risk
em eResearch Archive - Queensland Department of Agriculture
Resumo:
It is essential to provide experimental evidence and reliable predictions of the effects of water stress on crop production in the drier, less predictable environments. A field experiment undertaken in southeast Queensland, Australia with three water regimes (fully irrigated, rainfed and irrigated until late canopy expansion followed by rainfed) was used to compare effects of water stress on crop production in two maize (Zea mays L.) cultivars (Pioneer 34N43 and Pioneer 31H50). Water stress affected growth and yield more in Pioneer 34N43 than in Pioneer 31H50. A crop model APSIM-Maize, after having been calibrated for the two cultivars, was used to simulate maize growth and development under water stress. The predictions on leaf area index (LAI) dynamics, biomass growth and grain yield under rain fed and irrigated followed by rain fed treatments was reasonable, indicating that stress indices used by APSIM-Maize produced appropriate adjustments to crop growth and development in response to water stress. This study shows that Pioneer 31H50 is less sensitive to water stress and thus a preferred cultivar in dryland conditions, and that it is feasible to provide sound predictions and risk assessment for crop production in drier, more variable conditions using the APSIM-Maize model.
Resumo:
Retrospective identification of fire severity can improve our understanding of fire behaviour and ecological responses. However, burnt area records for many ecosystems are non-existent or incomplete, and those that are documented rarely include fire severity data. Retrospective analysis using satellite remote sensing data captured over extended periods can provide better estimates of fire history. This study aimed to assess the relationship between the Landsat differenced normalised burn ratio (dNBR) and field measured geometrically structured composite burn index (GeoCBI) for retrospective analysis of fire severity over a 23 year period in sclerophyll woodland and heath ecosystems. Further, we assessed for reduced dNBR fire severity classification accuracies associated with vegetation regrowth at increasing time between ignition and image capture. This was achieved by assessing four Landsat images captured at increasing time since ignition of the most recent burnt area. We found significant linear GeoCBI–dNBR relationships (R2 = 0.81 and 0.71) for data collected across ecosystems and for Eucalyptus racemosa ecosystems, respectively. Non-significant and weak linear relationships were observed for heath and Melaleuca quinquenervia ecosystems, suggesting that GeoCBI–dNBR was not appropriate for fire severity classification in specific ecosystems. Therefore, retrospective fire severity was classified across ecosystems. Landsat images captured within ~ 30 days after fire events were minimally affected by post burn vegetation regrowth.
Resumo:
A series of related research studies over 15 years assessed the effects of prawn trawling on sessile megabenthos in the Great Barrier Reef, to support management for sustainable use in the World Heritage Area. These large-scale studies estimated impacts on benthos (particularly removal rates per trawl pass), monitored subsequent recovery rates, measured natural dynamics of tagged megabenthos, mapped the regional distribution of seabed habitats and benthic species, and integrated these results in a dynamic modelling framework together with spatio-temporal fishery effort data and simulated management. Typical impact rates were between 5 and 25% per trawl, recovery times ranged from several years to several decades, and most sessile megabenthos were naturally distributed in areas where little or no trawling occurred and so had low exposure to trawling. The model simulated trawl impact and recovery on the mapped species distributions, and estimated the regional scale cumulative changes due to trawling as a time series of status for megabenthos species. The regional status of these taxa at time of greatest depletion ranged from ∼77% relative to pre-trawl abundance for the worst case species, having slow recovery with moderate exposure to trawling, to ∼97% for the least affected taxon. The model also evaluated the expected outcomes for sessile megabenthos in response to major management interventions implemented between 1999 and 2006, including closures, effort reductions, and protected areas. As a result of these interventions, all taxa were predicted to recover (by 2-14% at 2025); the most affected species having relatively greater recovery. Effort reductions made the biggest positive contributions to benthos status for all taxa, with closures making smaller contributions for some taxa. The results demonstrated that management actions have arrested and reversed previous unsustainable trends for all taxa assessed, and have led to a prawn trawl fishery with improved environmental sustainability. © 2015 International Council for the Exploration of the Sea 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Resumo:
This project reviewed international research conducted on the possible role of plants in alleviating high temperatures in our living spaces. The literature review served to identify the work that has already been carried out in the area and to highlight the gaps to be filled by experimental research. A pilot study then investigated the thermal properties of six of the most common landscaping materials. This project clearly shows that plants can play a significant role in modifying the thermal conditions of urban environments. Tall trees can shade nearby buildings and allow for reductions in cooling costs. In addition to basic shading, the dispersal of heat via the plant’s natural transpiration stream has long been recognised as an important component of the urban energy balance. It has been shown that urban temperatures can be up to 7°C higher than nearby rural areas, illustrating the impact of plants on their environment. These benefits argue against the idea of removing plants from landscapes in order to save on water in times of drought. Similarly, the idea of switching to artificial turf is questionable, since artificial turf still requires watering and can reach temperatures that far exceed the safe range for players. While vegetation offers evaporative cooling, non-vegetative, impervious surfaces such as concrete do not, and can therefore cause greater surface and soil temperatures. In addition, the higher temperatures associated with these impervious surfaces can negatively affect the growth of plants in surrounding areas. Permeable surfaces, such as mulches, have better insulating properties and can prevent excessive heating of the soil. However, they can also lead to an increase in reflected longwave radiation, causing the leaves of plants to close their water-conducting pores and reducing the beneficial cooling effects of transpiration. The results show that the energy balance of our surroundings is complicated and that all components of a landscape will have an impact on thermal conditions.
Resumo:
The key outcome will be to identify a technology that is practical to use to scan logs identified by the modelling as suspect or marginal for sawing and to confirm their unsuitability for value adding sawing by internal scanning.
Resumo:
Roundwood structures have always been used for temporary and low cost shelters and other fleeting structures. Novel concepts for the use of plantation hardwoods in roundwood form in construction were developed and circulated along with an electronic questionnaire to stakeholders representing growers, designers and users of hardwood. Responses indicate that there is a high level of interest in developing products from the emerging small roundwood resource and a detailed program of research was supported and recommended by the majority of participants in the survey. These results indicate a high level of support for further investigation into the use of plantation hardwood for roundwood components. Respondents representing a wide range of stakeholders have indicated that to gain benefit from a detailed project they would require solutions for connection systems and protection from pests and weathering, indications of cost and assurance of ongoing supply for niche applications, data for strength, acoustic dampening and thermal insulation properties, acceptance by regulatory authorities and training for on-site construction.
Resumo:
Silverleaf whitefly (SLW), Bemisia tabaci biotype B, is a major horticultural pest that costs Queensland vegetable growers millions of dollars in lost production and control measures each year. In the Bowen and Burdekin districts of North Queensland, the major cultivated SLW host crops are tomatoes, melons, green beans, pumpkins, eggplants, and cucumbers, which cover a total production area of approximately 6500 ha. Eretmocerus hayati, an effective SLW parasitoid, was imported into Australia by CSIRO in 2002 and released from quarantine in 2004. In 2006, DAFF established a mass-rearing unit for E. hayati at Bowen Research Station to provide E. hayati for release on vegetable farms within its SLW integrated pest management research program. A total of 1.3 million E. hayati were released over three seasons on 34 vegetable farms in the Bowen and Burdekin districts (October 2006 to December 2008). Post-release samplings were conducted across the release area over this time period with parasitism levels recorded in tomatoes, melons, beans, eggplants, pumpkins, and various SLW weed hosts. Sample data show that E. hayati established at most release sites as well as some non-release sites, indicating natural spread. Overall results from these three years of evaluation clearly demonstrated that E hayati releases played a significant role in SLW control. In most crops sampled, E hayati exerted between 30 and 80% parasitism. Even in regularly sprayed crops, such as tomato and eggplant, E. hayati was able to achieve an overall average parasitism of 45%.