3 resultados para Allergic rhinitis

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The greatest attraction to using carambola (Averrhoa carambola L.) in the fresh-cut market is the star shape that the fruit presents after a transverse cut. Carambola is well-suited for minimal processing, but cut surface browning is a main cause of deterioration. This problem is exacerbated as a result of mechanical injuries occurring during processing and is mainly induced by the leakage of phenolic compounds from the vacuole and subsequent oxidation by polyphenol oxidase (PPO) (Augustin et al., 1985). The use of browning inhibitors in processed fruits is restricted to compounds that are non-toxic, ‘wholesome’, and that do not adversely affect taste and flavour (Gil et al., 1998). In the past, browning was mainly controlled by the action of sulphites, but the use of this compound has declined due to allergic reactions in asthmatics (Weller et al., 1995). The shelf life of fresh-cut products may be extended by a combination of oxygen exclusion and the use of enzymatic browning inhibitors. The objectives of this work were to determine the effects of: (1) post-cutting chemical treatments of ascorbic, citric, oxalic acids, and EDTA-Ca; (2) atmospheric modification; and (3) combinations of the above, on the shelf life of carambola slices based on appearance, colour and polyphenol oxidase activity

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS: To examine pigs at slaughter in New Zealand for the presence of Pasteurella multocida, and to determine for isolates, their biochemical profi les, somatic and capsular types, and the presence or absence of the HSB and toxA genes, associated with haemorrhagic septicaemia (HS) and progressive atrophic rhinitis (PAR), respectively. METHODS: Swabs from 173 lungs, 158 palatine tonsils and 82 nasal passages of pigs at two abattoirs in New Zealand were cultured for P. multocida using conventional techniques, and isolated colonies were subjected to biochemical tests for identi- fi cation of biovars. Somatic serotyping was conducted using an agar gel immunodiffusion (AGID) test. Polymerase chain reaction (PCR) assays were used to confi rm phenotypic identifi cation of colonies using species-specifi c primers, capsule type using serogroup-specifi c primers and multiplex PCR, and to test for the presence of HSB and toxA genes. RESULTS: Pasteurella multocida was isolated from 11/173 (6.4%) lung, 32/158 (20.2%) palatine tonsil and 5/82 (6.1 %) nasal swab samples, a total of 48 isolates from 413 samples (11.6%). Isolation rates per farm ranged from 1–53% of tissue samples collected from pigs 5–6 months of age. On phenotypic characterisation, isolates were allocated to seven main biovars, viz 1, 2, 3, 5, 9, 12, and a dulcitol-negative variant of Biovar 8, the majority (30/48) being Biovar 3. Of the 42 isolates for which somatic serotyping was conducted, 10% were Serovar 1, 79% were Serovar 3, 2% were Serovar 6,1, 2% were Serovar 12, and 7% could not be typed. All 48 isolates were confi rmed as P. multocida using a species-specifi c PCR. In the capsular multiplex PCR, 92% of isolates were Capsular (Cap) type A, 2% were Cap D, and 6% could not be typed. None of the samples were positive for the HSB or toxA genes. CONCLUSION: Serovars or capsular types of P. multocida associated with HS or PAR in pigs were not detected. Establishment of species-specifi c, capsular and toxin PCR assays allowed the rapid screening of isolates of P. multocida, while serotyping provided an additional tool for epidemiological and tracing purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of plant growth conditions on concentrations of proteins, including allergens, in peanut (Arachis hypogaea L.) kernels are largely unknown. Peanuts (cv. Walter) were grown at five sites (Taabinga, Redvale, Childers, Bundaberg, and Kairi) covering three commercial growing regions in Queensland, Australia. Differences in temperature, rainfall, and solar radiation during the growing season were evaluated. Kernel yield varied from 2.3 t/ha (Kairi) to 3.9 t/ha (Childers), probably due to differences in solar radiation. Crude protein appeared to vary only between Kairi and Childers, whereas Ara h 1 and 2 concentrations were similar in all locations. 2D-DIGE revealed significant differences in spot volumes for only two minor protein spots from peanuts grown in the five locations. Western blotting using peanut-allergic serum revealed no qualitative differences in recognition of antigens. It was concluded that peanuts grown in different growing regions in Queensland, Australia, had similar protein compositions and therefore were unlikely to show differences in allergenicity.