2 resultados para Alcoba, Laura
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Effective and targeted conservation action requires detailed information about species, their distribution, systematics and ecology as well as the distribution of threat processes which affect them. Knowledge of reptilian diversity remains surprisingly disparate, and innovative means of gaining rapid insight into the status of reptiles are needed in order to highlight urgent conservation cases and inform environmental policy with appropriate biodiversity information in a timely manner. We present the first ever global analysis of extinction risk in reptiles, based on a random representative sample of 1500 species (16% of all currently known species). To our knowledge, our results provide the first analysis of the global conservation status and distribution patterns of reptiles and the threats affecting them, highlighting conservation priorities and knowledge gaps which need to be addressed urgently to ensure the continued survival of the world’s reptiles. Nearly one in five reptilian species are threatened with extinction, with another one in five species classed as Data Deficient. The proportion of threatened reptile species is highest in freshwater environments, tropical regions and on oceanic islands, while data deficiency was highest in tropical areas, such as Central Africa and Southeast Asia, and among fossorial reptiles. Our results emphasise the need for research attention to be focussed on tropical areas which are experiencing the most dramatic rates of habitat loss, on fossorial reptiles for which there is a chronic lack of data, and on certain taxa such as snakes for which extinction risk may currently be underestimated due to lack of population information. Conservation actions specifically need to mitigate the effects of human-induced habitat loss and harvesting, which are the predominant threats to reptiles.
Resumo:
There are currently limited options for the control of the invasive tropical perennial sedge 'Cyperus aromaticus' (Ridley) Mattf. and Kukenth (Navua sedge). The potential for halosulfuron-methyl as a selective herbicide for Navua sedge control in tropical pastures was investigated by undertaking successive field and shade house experiments in North Queensland, Australia. Halosulfuron-methyl and adjuvant rates, and combinations with other herbicides, were examined to identify a herbicide regime that most effectively reduced Navua sedge. Our research indicated that combining halosulfuron- methyl with other herbicides did not improve efficacy for Navua sedge control. We also identified that low rates of halosulfuron-methyl (25 g ha-1 a.i.) were just as effective as higher rates (73 g ha-1 a.i.) at controlling the sedge, and that this control relied on the addition of the adjuvant Bonza at the recommended concentration (1% of the spray volume). Pot trials in the controlled environment of the shade house achieved total mortality under these regimes. Field trials demonstrated more variable results with reductions in Navua sedge ranging between 40-95% at 8-10 weeks after treatment. After this period (16-24 weeks after treatment), regrowth of sedge, either from newly germinated seed, or of small plants protected from initial treatment, indicated sedge populations can rapidly increase to levels similar to pre-application, depending on the location and climatic conditions. Such variable results highlight the need for concerted monitoring of pastures to identify optimal treatment times. Ideally, initial treatment should be done when the sedge is healthy and actively growing, with follow up-treatments applied when new seed heads are produced from regrowth.