5 resultados para Air warfare.
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Aims: To investigate methods for the recovery of airborne bacteria within pig sheds and to then use the appropriate methods to determine the levels of heterotrophs and Escherichia coli in the air within sheds. Methods and Results: AGI-30 impingers and a six-stage Andersen multi-stage sampler (AMS) were used for the collection of aerosols. Betaine and catalase were added to impinger collection fluid and the agar plates used in the AMS. Suitable media for enumerating E. coli with the Andersen sampler were also evaluated. The addition of betaine and catalase gave no marked increase in the recovery of heterotrophs or E. coli. No marked differences were found in the media used for enumeration of E. coli. The levels of heterotrophs and E. coli in three piggeries, during normal pig activities, were 2Æ2 · 105 and 21 CFU m)3 respectively. Conclusions: The failure of the additives to improve the recovery of either heterotrophs or E. coli suggests that these organisms are not stressed in the piggery environment. The levels of heterotrophs in the air inside the three Queensland piggeries investigated are consistent with those previously reported in other studies. Flushing with ponded effluent had no marked or consistent effect on the heterotroph or E. coli levels. Significance and Impact of the Study: Our work suggests that levels of airborne heterotrophs and E. coli inside pig sheds have no strong link with effluent flushing. It would seem unlikely that any single management activity within a pig shed has a dominant influence on levels of airborne heterotrophs and E. coli
Resumo:
Using benzene as a candidate air toxicant and A549 cells as an in vitro cell model, we have developed and validated a hanging drop (HD) air exposure system that mimics an air liquid interface exposure to the lung for periods of 1 h to over 20 days. Dose response curves were highly reproducible for 2D cultures but more variable for 3D cultures. By comparing the HD exposure method with other classically used air exposure systems, we found that the HD exposure method is more sensitive, more reliable and cheaper to run than medium diffusion methods and the CULTEX (R) system. The concentration causing 50% of reduction of cell viability (EC50) for benzene, toluene, p-xylene, m-xylene and o-xylene to A549 cells for 1 h exposure in the HD system were similar to previous in vitro static air exposure. Not only cell viability could be assessed but also sub lethal biological endpoints such as DNA damage and interleukin expressions. An advantage of the HD exposure system is that bioavailability and cell concentrations can be derived from published physicochemical properties using a four compartment mass balance model. The modelled cellular effect concentrations EC50(cell) for 1 h exposure were very similar for benzene, toluene and three xylenes and ranged from 5 to 15 mmol/kg(dry weight) which corresponds to the intracellular concentration of narcotic chemicals in many aquatic species, confirming the high sensitivity of this exposure method. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
A recently developed hanging drop air exposure system for toxicity studies of volatile chemicals was applied to evaluate the cell viability of lung carcinoma A549 cells after 1 h and 24 h of exposure to benzene, toluene, ethylbenzene and xylenes (BTEX) as individual compounds and mixtures of 4 or 6 components. The cellular chemical concentrations causing 50% reduction of cell viability (EC50) were calculated use a mass balance model and came to 17, 12, 11, 9, 4 and 4 mmol/kg cell dry weight for benzene, toluene, ethylbenzene, m-xylene, o-xylene and p-xylene respectively after 1 h of exposure. The EC50 decreased by a factor of four after 24 h of exposure. All mixture effects were best described by the mixture toxicity model of concentration addition, which is valid for chemicals with the same mode of action. Good agreement with the model predictions were found for benzene, toluene, ethylbenzene and m-xylene at four different representative fixed concentration ratios after 1 h of exposure but lower agreement to mixture prediction was obtained after 24 h of exposure. A recreated car exhaust mixture, which involved the contribution of the more toxic p-xylene and o-xylene, yielded an acceptable but lower quality prediction as well.
Resumo:
Astaxanthin is a powerful antioxidant with various health benefits such as prevention of age-related macular degeneration and improvement of the immune system, liver and heart function. To improve the post-harvesting stability of astaxanthin used in food, feed and nutraceutical industries, the biomass of the high astaxanthin producing alga Haematococcus pluvialis was dried by spray- or freeze-drying and under vacuum or air at − 20 °C to 37 °C for 20 weeks. Freeze-drying led to 41 higher astaxanthin recovery compared to commonly-used spray-drying. Low storage temperature (− 20 °C, 4 °C) and vacuum-packing also showed higher astaxanthin stability with as little as 12.3 ± 3.1 degradation during 20 weeks of storage. Cost-benefit analysis showed that freeze-drying followed by vacuum-packed storage at − 20 °C can generate AUD600 higher profit compared to spray-drying from 100 kg H. pluvialis powder. Therefore, freeze-drying can be suggested as a mild and more profitable method for ensuring longer shelf life of astaxanthin from H. pluvialis.
Resumo:
Apples at 24 ± 2 °C were heated in a pilot scale hot air assisted (40 °C) continuous pentagonal microwave system, to evaluate the effectiveness of this treatment on insect mortality (variety Mutsu) and fruit quality (variety Granny Smith). An average temperature of 53.4 ± 1.3 °C at core, bottom and flesh of the apple was recorded at the end of the treatment. One hundred percent mortality of the most tolerant stage of Queensland fruit fly (Bactrocera tryoni, Froggatt) and Jarvis's fruit fly (Bactrocera jarvisi, Tryon), were observed when the Mortality value (M52, equivalent time of isothermal treatment at 52 °C) at the slowest heating point applicable for each experiment was ≥ 50 min and ≥ 37 min, respectively. Results showed that microwave heat treatment is effective for insect disinfestation without any adverse impact on total soluble solids, flesh or peel firmness of the treated apples. The treated apples recorded a significantly higher pH and lower ion leakage than the untreated apples after 3 or 4 weeks. Therefore, the microwave heat treatment has the potential to be developed as an alternative chemical free quarantine treatment against economically significant insect pests. Industrial relevance Hot air assisted microwave heating of fruits and vegetables, is more cost effective compared to vapour heat treatment and ionising radiation for disinfestation of insects. Microwave treatment is environmentally friendly compared to fumigation and chemical treatments. Hot air assisted microwave disinfestation can be performed at farms or centralised pack houses since the capital cost would be comparatively lower than vapour heat or ionising radiation treatments.