118 resultados para Agricultural meteorology. Crops and climate

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reforestation of agricultural land with mixed-species environmental plantings (native trees and shrubs) can contribute to mitigation of climate change through sequestration of carbon. Although soil carbon sequestration following reforestation has been investigated at site- and regional-scales, there are few studies across regions where the impact of a broad range of site conditions and management practices can be assessed. We collated new and existing data on soil organic carbon (SOC, 0–30 cm depth, N = 117 sites) and litter (N = 106 sites) under mixed-species plantings and an agricultural pair or baseline across southern and eastern Australia. Sites covered a range of previous land uses, initial SOC stocks, climatic conditions and management types. Differences in total SOC stocks following reforestation were significant at 52% of sites, with a mean rate of increase of 0.57 ± 0.06 Mg C ha−1 y−1. Increases were largely in the particulate fraction, which increased significantly at 46% of sites compared with increases at 27% of sites for the humus fraction. Although relative increase was highest in the particulate fraction, the humus fraction was the largest proportion of total SOC and so absolute differences in both fractions were similar. Accumulation rates of carbon in litter were 0.39 ± 0.02 Mg C ha−1 y−1, increasing the total (soil + litter) annual rate of carbon sequestration by 68%. Previously-cropped sites accumulated more SOC than previously-grazed sites. The explained variance differed widely among empirical models of differences in SOC stocks following reforestation according to SOC fraction and depth for previously-grazed (R2 = 0.18–0.51) and previously-cropped (R2 = 0.14–0.60) sites. For previously-grazed sites, differences in SOC following reforestation were negatively related to total SOC in the pasture. By comparison, for previously-cropped sites, differences in SOC were positively related to mean annual rainfall. This improved broad-scale understanding of the magnitude and predictors of changes in stocks of soil and litter C following reforestation is valuable for the development of policy on carbon markets and the establishment of future mixed-species environmental plantings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Researchers developing climate-based forecasts, workshops, software tools and information to aid grazier decisions undertook an evaluation study to enhance planning and benchmark impact. One hundred graziers in Western Queensland were randomly selected from 7 shires and surveyed by mail and telephone (43 respondents) to explore levels of knowledge and use of climate information, practices and information needs. We found 36% of respondents apply the Southern Oscillation Index to property decisions but 92% were unaware El Niño Southern Oscillation’s predictive signal in the region is greater for pasture growth than rainfall, suggesting they may not recognise the potential of pasture growth forecasts. Almost 75% of graziers consider they are conservative or risk averse in their attitude to managing their enterprise. Mail respondents (n= 20) if given a 68%, on average, probability of exceeding median rainfall forecast may change a decision; almost two-thirds vary stocking rate based on forage available, last year’s pasture growth or the Southern Oscillation Index; the balance maintain a constant stocking rate strategy; 90% have access to a computer; 75% to the internet and 95% have a fax. This paper presents findings of the study and draws comparisons with a similar study of 174 irrigators in the Northern Murray-Darling Basin (Aust. J. Exp. Ag. 44, 247-257). New insights and information gained are helping the team better understand client needs and plan, design and extend tools and information tailored to grazier knowledge, practice, information needs and preferences. Results have also provided a benchmark against which to measure project impact and have influenced the team to make important changes to their project planning, activities and methods for transferring technology tailored to grazier preferences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, there have been significant developments in climate science relevant to agriculture and natural resource management. Assessing impacts of climate variability and use of seasonal climate forecasts have become increasingly important elements in the management "toolkit" for many Australian farmers. Consideration of climate change further increases the need for improved management strategies. While climate risk extension activities have kept pace with advances in climate science, a national review of the Vocational Education and Training system in Australia in relation to "weather and climate" showed that these topics were "poorly represented" at the management level in the Australian Qualifications Framework, and needed increased emphasis. Consequently, a new Unit of Competency concerning management of climatic risk was developed and accredited to address this deficiency. The objective of the unit was to build knowledge and skills for better management of climate variability via the elements of surveying climatic and enterprise data; analysing climatic risks and opportunities; and developing climatic risk management strategies. This paper describes establishment of a new unit for vocational education that is designed to harness recent developments in applied climate science for better management of Australia's highly variable climate. The main benefits of the new unit of competency, "Developing climatic risk management strategies,"were seen as improving decisions in climate and agriculture, and reducing climate risk exposure to enhance sustainable agriculture. The educational unit is now within the scope of agricultural colleges, universities, and registered training organisations as an accredited unit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate affects the custard apple industry in a range of ways through impacts on growth, disease risk, fruit set and industry location. Climates in Australia are influenced by surrounding oceans, and are very variable from year to year. However, amidst this variability there are significant trends, with Australian annual mean temperatures increasing since 1910, and particularly since 1950, with night-time temperatures increasing faster (0.11oC/decade) than daytime temperatures (0.06oC/decade). These temperature increases and other climate changes are expected to continue as a result of greenhouse gas emissions, with ongoing impacts on the custard apple industry. Five sites were chosen to assess possible future climate changes : Mareeba, Yeppoon, Bundaberg, Nambour and Lismore, these sites representing the extent of the majority of custard apple production in eastern Australia. A fifth site (Coffs Harbour) was selected as it is south of the current production regions. A mean warming of 0.8 to 1.2oC is anticipated over most of these sites by the year 2030, relative to 1990. This paper assesses the potential effects of climate change on custard apple production, and suggests strategies for adaptation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The project uses participatory methods to engage primary producers and advisers in central Queensland, southern Queensland, and north east New South Wales on-farm trials and demonstrations to adapt mixed farming systems to changed climate conditions. The focus is adaptation to climate change but will support abatement of greenhouse gas emissions by building soil carbon, better managing soil nitrogen and soil organic carbon. Data will be collected and integrated with data from Round 1 of the Climate Change Research Program to extend industry understanding beyond a general awareness of ‘climate change’. Nitrous oxide and soil carbon data will help farmers/advisers understand the implications of climate change and develop adaptation strategies for a more sustainable, climate sensitive future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents the use of a whole farm model in a participatory modelling research approach to examine the sensitivity of four contrasting case study farms to a likely climate change scenario. The newly generated information was used to support discussions with the participating farmers in the search for options to design more profitable and sustainable farming systems in Queensland Australia. The four case studies contrasted in key systems characteristics: opportunism in decision making, i.e. flexible versus rigid crop rotations; function, i.e. production of livestock or crops; and level of intensification, i.e. dryland versus irrigated agriculture. Tested tactical and strategic changes under a baseline and climate change scenario (CCS) involved changes in the allocation of land between cropping and grazing enterprises, alternative allocations of limited irrigation water across cropping enterprises, and different management rules for planting wheat and sorghum in rainfed cropping. The results show that expected impacts from a likely climate change scenario were evident in the following increasing order: the irrigated cropping farm case study, the cropping and grazing farm, the more opportunistic rainfed cropping farm and the least opportunistic rainfed cropping farm. We concluded that in most cases the participating farmers were operating close to the efficiency frontier (i.e. in the relationship between profits and risks). This indicated that options to adapt to climate change might need to evolve from investments in the development of more innovative cropping and grazing systems and/or transformational changes on existing farming systems. We expect that even though assimilating expected changes in climate seems to be rather intangible and premature for these farmers, as innovations are developed, adaptation is likely to follow quickly. The multiple interactions among farm management components in complex and dynamic farm businesses operating in a variable and changing climate, make the use of whole farm participatory modelling approaches valuable tools to quantify benefits and trade-offs from alternative farming systems designs in the search for improved profitability and resilience.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an increasing need to understand what makes vegetation at some locations more sensitive to climate change than others. For savanna rangelands, this requires building knowledge of how forage production in different land types will respond to climate change, and identifying how location-specific land type characteristics, climate and land management control the magnitude and direction of its responses to change. Here, a simulation analysis is used to explore how forage production in 14 land types of the north-eastern Australian rangelands responds to three climate change scenarios of +3A degrees C, +17% rainfall; +2A degrees C, -7% rainfall; and +3A degrees C, -46% rainfall. Our results demonstrate that the controls on forage production responses are complex, with functional characteristics of land types interacting to determine the magnitude and direction of change. Forage production may increase by up to 60% or decrease by up to 90% in response to the extreme scenarios of change. The magnitude of these responses is dependent on whether forage production is water or nitrogen (N) limited, and how climate changes influence these limiting conditions. Forage production responds most to changes in temperature and moisture availability in land types that are water-limited, and shows the least amount of change when growth is restricted by N availability. The fertilisation effects of doubled atmospheric CO2 were found to offset declines in forage production under 2A degrees C warming and a 7% reduction in rainfall. However, rising tree densities and declining land condition are shown to reduce potential opportunities from increases in forage production and raise the sensitivity of pastures to climate-induced water stress. Knowledge of these interactions can be applied in engaging with stakeholders to identify adaptation options.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Characterization of drought environment types (ETs) has proven useful for breeding crops for drought-prone regions. Here we consider how changes in climate and atmospheric carbon dioxide (CO2) concentrations will affect drought ET frequencies in sorghum and wheat systems of Northeast Australia. We also modify APSIM (the Agricultural Production Systems Simulator) to incorporate extreme heat effects on grain number and weight, and then evaluate changes in the occurrence of heat-induced yield losses of more than 10, as well as the co-occurrence of drought and heat. More than six million simulations spanning representative locations, soil types, management systems, and 33 climate projections led to three key findings. First, the projected frequency of drought decreased slightly for most climate projections for both sorghum and wheat, but for different reasons. In sorghum, warming exacerbated drought stresses by raising the atmospheric vapor pressure deficit and reducing transpiration efficiency (TE), but an increase in TE due to elevated CO2 more than offset these effects. In wheat, warming reduced drought stress during spring by hastening development through winter and reducing exposure to terminal drought. Elevated CO2 increased TE but also raised radiation use efficiency and overall growth rates and water use, thereby offsetting much of the drought reduction from warming. Second, adding explicit effects of heat on grain number and grain size often switched projected yield impacts from positive to negative. Finally, although average yield losses associated with drought will remain generally higher than for heat stress for the next half century, the relative importance of heat is steadily growing. This trend, as well as the likely high degree of genetic variability in heat tolerance, suggests that more emphasis on heat tolerance is warranted in breeding programs. At the same time, work on drought tolerance should continue with an emphasis on drought that co-occurs with extreme heat. This article is protected by copyright. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Characterization of drought environment types (ETs) has proven useful for breeding crops for drought-prone regions. Here we consider how changes in climate and atmospheric carbon dioxide (CO2) concentrations will affect drought ET frequencies in sorghum and wheat systems of Northeast Australia. We also modify APSIM (the Agricultural Production Systems Simulator) to incorporate extreme heat effects on grain number and weight, and then evaluate changes in the occurrence of heat-induced yield losses of more than 10%, as well as the co-occurrence of drought and heat. More than six million simulations spanning representative locations, soil types, management systems, and 33 climate projections led to three key findings. First, the projected frequency of drought decreased slightly for most climate projections for both sorghum and wheat, but for different reasons. In sorghum, warming exacerbated drought stresses by raising the atmospheric vapor pressure deficit and reducing transpiration efficiency (TE), but an increase in TE due to elevated CO2 more than offset these effects. In wheat, warming reduced drought stress during spring by hastening development through winter and reducing exposure to terminal drought. Elevated CO2 increased TE but also raised radiation use efficiency and overall growth rates and water use, thereby offsetting much of the drought reduction from warming. Second, adding explicit effects of heat on grain number and grain size often switched projected yield impacts from positive to negative. Finally, although average yield losses associated with drought will remain generally higher than for heat stress for the next half century, the relative importance of heat is steadily growing. This trend, as well as the likely high degree of genetic variability in heat tolerance, suggests that more emphasis on heat tolerance is warranted in breeding programs. At the same time, work on drought tolerance should continue with an emphasis on drought that co-occurs with extreme heat. This article is protected by copyright. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is uncertainty over the potential changes to rainfall across northern Australia under climate change. Since rainfall is a key driver of pasture growth, cattle numbers and the resulting animal productivity and beef business profitability, the ability to anticipate possible management strategies within such uncertainty is crucial. The Climate Savvy Grazing project used existing research, expert knowledge and computer modelling to explore the best-bet management strategies within best, median and worse-case future climate scenarios. All three scenarios indicated changes to the environment and resources upon which the grazing industry of northern Australia depends. Well-adapted management strategies under a changing climate are very similar to best practice within current climatic conditions. Maintaining good land condition builds resource resilience, maximises opportunities under higher rainfall years and reduces the risk of degradation during drought and failed wet seasons. Matching stocking rate to the safe long-term carrying capacity of the land is essential; reducing stock numbers in response to poor seasons and conservatively increasing stock numbers in response to better seasons generally improves profitability and maintains land in good condition. Spelling over the summer growing season will improve land condition under a changing climate as it does under current conditions. Six regions were included within the project. Of these, the Victoria River District in the Northern Territory, Gulf country of Queensland and the Kimberley region of Western Australia had projections of similar or higher than current rainfall and the potential for carrying capacity to increase. The Alice Springs, Maranoa-Balonne and Fitzroy regions had projections of generally drying conditions and the greatest risk of reduced pasture growth and carrying capacity. Encouraging producers to consider and act on the risks, opportunities and management options inherent in climate change was a key goal of the project. More than 60,000 beef producers, advisors and stakeholders are now more aware of the management strategies which build resource resilience, and that resilience helps buffer against the effects of variable and changing climatic conditions. Over 700 producers have stated they have improved confidence, skills and knowledge to attempt new practices to build resilience. During the course of the project, more than 165 beef producers reported they have implemented changes to build resource and business resilience.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project provided information, selection techniques and strategies to facilitate the development of high-yielding, stay-green wheat varieties for Australian growers through: a) Improved understanding of the relationships between seminal root traits and other root- and shoot-related traits in determining high-yielding, stay-green phenotypes. b). Molecular markers and rapid phenotypic screening methods that allow selection in breeding programs and identification of genetic regions controlling favourable traits. c). Identification of traits leading to high-yielding, stay-green phenotypes for particular target populations of environments using computer simulation studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As climate change continues to impact socio-ecological systems, tools that assist conservation managers to understand vulnerability and target adaptations are essential. Quantitative assessments of vulnerability are rare because available frameworks are complex and lack guidance for dealing with data limitations and integrating across scales and disciplines. This paper describes a semi-quantitative method for assessing vulnerability to climate change that integrates socio-ecological factors to address management objectives and support decision-making. The method applies a framework first adopted by the Intergovernmental Panel on Climate Change and uses a structured 10-step process. The scores for each framework element are normalized and multiplied to produce a vulnerability score and then the assessed components are ranked from high to low vulnerability. Sensitivity analyses determine which indicators most influence the analysis and the resultant decision-making process so data quality for these indicators can be reviewed to increase robustness. Prioritisation of components for conservation considers other economic, social and cultural values with vulnerability rankings to target actions that reduce vulnerability to climate change by decreasing exposure or sensitivity and/or increasing adaptive capacity. This framework provides practical decision-support and has been applied to marine ecosystems and fisheries, with two case applications provided as examples: (1) food security in Pacific Island nations under climate-driven fish declines, and (2) fisheries in the Gulf of Carpentaria, northern Australia. The step-wise process outlined here is broadly applicable and can be undertaken with minimal resources using existing data, thereby having great potential to inform adaptive natural resource management in diverse locations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decision-making in agriculture is carried out in an uncertain environment with farmers often seeking information to reduce risk. As a result of the extreme variability of rainfall and stream-flows in north-eastern Australia, water supplies for irrigated agriculture are a limiting factor and a source of risk. The present study examined the use of seasonal climate forecasting (SCF) when calculating planting areas for irrigated cotton in the northern Murray Darling Basin. Results show that minimising risk by adjusting plant areas in response to SCF can lead to significant gains in gross margin returns. However, how farmers respond to SCF is dependent on several other factors including irrigators’ attitude towards risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A survey for various mycotoxins was carried out on samples of all wheat delivered to nine storage and marketing depots in south-eastern Queensland, selected as most likely to receive mycotoxin-contaminated grain. All wheat was surveyed during 1983, when the degree of weather damage was high. Samples of the poorest grade of wheat from these depots were also surveyed in 1984 and 1985. The surveys included all regions where head scab of wheat caused by Fusariurn graminearurn Schwabe Group 2 had been reported to occur at significant levels. 4-Deoxynivalenol was detected in nearly all pooled samples representing bulk wheat at concentrations ranging from traces of <0.01 up to 1.7 mg kg-1. The highest concentration of zearlenone detected in a pooled wheat sample was 0.04 mg kg-1. In a few samples representing individual wheat deliveries and with up to 2.8% by weight of pink grains, 4-deoxynivalenol concentrations ranged up to 11.7 mg kg-' and zearalenone up to 0.43 mg kg-l. Aflatoxins B,, B2, G1 and G2 were detected in only one pooled sample of wheat, at a total aflatoxin concentration of 0.003 mg kg-'. Ochratoxin A, sterigmatocystin and T-2 toxin were not detected. Higher concentrations of mycotoxins were found in the poorer grades of wheat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A survey for mycotoxins and fungal damage in maize (Zea mays L.) grown during 1982 in Far North Queensland is reported. This season had a rainfall distribution which was typical for the reglon. The 293 samples examined came from 11 1 farms in eight maize-growing districts. The samples were first subjected to rapid screening tests for fungal damage. Aflatoxins B1, B2, G1, G2 ochratoxin A, T-2 toxin, and sterigmatocystin were not detected, but zearalenone was found in 85% of the samples. The concentrations of zearalenone were correlated with the extent of Gibberella zeae cob rot as indicated by the proportion (up to 2%) of kernels in each sample having a reddish-purple discoloration. In four samples the zearalenone concentration exceeded 1 mg kg-1, but the mean ¦ s.d. (n = 293) concentration in all samples was 0.17 ¦ 0.225 mg kg-1. Concentrations were highest in districts with the highest rainfall during the period of maize growth.