3 resultados para Aging women
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Weed management is complicated by the presence of soil seed banks. The complexity of soil-seed interactions means that seed persistence in the field is often difficult to measure, let alone predict. Field trials, although accurate in their context, are time-consuming and expensive to conduct for individual species. Some ex situ techniques for estimating seed life expectancy have been proposed, but these fail to simulate the environmental complexity of the field. Also, it has been questioned whether techniques such as the controlled aging test (CAT) are useful indicators of field persistence. This study aimed to test the validity of the standard CAT (seed aging at 45 C and 60% relative humidity) in use at the Royal Botanic Gardens, Kew, U.K., for predicting field seed-persistence. Comparison of seed persistence and CAT data for 27 northwest European species suggested a significant positive correlation of 0.31. Subsequently, 13 species of emerging and common weeds of Queensland were assessed for their seed longevity using the CAT. The seed longevity data of these species in the CAT were linked with field seed-persistence data according to three broad seed-persistence categories: <1 yr, 1 to 3 yr, and >3 yr. We discuss the scope for using the CAT as a tool for rapid assignment of species to these categories. There is a need for further studies that compare predictions of seed persistence based on the CAT with seed persistence in the field for a larger range of species and environments.
Resumo:
The primary aim of this study was to determine the relationship between telomere length and age in a range of marine invertebrates including abalone (Haliotis spp) oysters (Saccostrea glomerata), spiny lobsters (Sagmariasus verreauxi formerly Jasus verreauxi and Jasus edwardsii) and school prawns (Metapenaeus macleayi). Additionally, this relationship was studied in a vertebrate organism using the freshwater fish Silver perch (Bidyanus bidyanus). Telomere length differences between tissues were also examined in some species such as Saccostrea glomerata, Sagmariasus verreauxi and Bidyanus bidyanus. In some cases cultured specimens of known age were used and this is quoted in the spreadsheets. For other wild-caught specimens where age was not known, size was used as a proxy for age. This may be a broad size class, or be determined by shell size or carapace length depending on the organism. Each spreadsheet contains raw data of telomere length estimates from Terminal Restriction Fragment Assays (TRF) for various individuals of each species including appropriate details such as age or size and tissue. Telomere length estimates are given in base pairs (bp). In most cases replicate experiments were conducted on groups of samples three times but on a small number of occasions only two replicate experiments were conducted. Further description of the samples can be found in final report of FRDC 2007/033. The arithmetic average for each individual (sample ID) across the two or three replicate experiments is also given. Bidyanus bidyanus (SilverPerch) Two sheets are contained within. a) Comparison of telomere length between different tissues (heart, liver and muscle) within the three year old age class - two replicate experiments were conducted. b) Comparison of telomere length between fish of different but known ages (0.25, 1, 2, and 3 years old) in each of three tissues, heart, liver and muscle – three replicate experiments were conducted per tissue. Haliotis spp (Abalone species) Three species were tested. H. asinina Telomere length was compared in two age classes-11 month and 18 month old abalone using muscle tissue from the foot. Within gel-variation was also estimated using a single sample run three times on one gel (replicate experiment). H. laevigata x H. rubra hybrids Telomere length was compared in three known age classes – two, three and four years old using muscle tissue from the foot. H. rubra Telomere length was compared in a range of different sized abalone using muscle tissue from the foot. Shell size is also given for each abalone Saccostrea glomerata Three sheets are contained within the file. a) Samples came from Moreton Bay Queensland in 2007. Telomere length was compared in two tissues (gill and mantle) of oysters in three age groups (1, 3 and 4 years) b) Samples came from Moreton Bay Queensland in 2009. Telomere length was compared in three age classes using DNA from gill tissue only c) Samples came from Wallis Lake, New South Wales. Telomere length was estimated from whole body minus the shell from 1 year old oysters, gill tissue of 3 age classes (1.5 years, 3 and 4 years), mantle tissue of two age classes (3 and 4 years). Sagmariasus verreauxi (formerly Jasus verreauxi) Telomere length was estimated from abdomen tissue of puerulus, gill and muscle tissue of 3 year old, large and very large size classes of lobsters. Jasus edwardsii Telomere length was measured in two size classes of lobsters- adults of varying sizes using muscle tissue and puerulus using tissues from the abdomen minus the exoskeleton. Metapenaeus macleayi Telomere length was measured in three size classes of school prawns adults. Muscle tissue was used, minus the exoskeleton.
Resumo:
The productivity of a fisheries resource can be quantified from estimates of recruitment, individual growth and natural and fisheries-related mortality, assuming the spatial extent of the resource has been quantified and there is minimal immigration or emigration. The sustainability of a fisheries resource is facilitated by management controls such as minimum and maximum size limits and total allowable catch. Minimum size limits are often set to allow individuals the opportunity to reproduce at least once before the chance of capture. Total allowable catches are a proportion of the population biomass, which is estimated based on known reproduction, recruitment, mortality and growth rates. In some fisheries, however, management actions are put in place without quantification of the resource through the stock assessment process. This occurs because species-specific information, for example individual growth, may not be available. In these circumstances, management actions need to be precautionary to protect against future resource collapse, but this often means that the resource is lightly exploited. Consequently, the productivity of the resource is not fully realised. Australia’s most valuable fisheries are invertebrate fisheries (Australian Department of Agriculture Fisheries and Forestry, 2008). For example, Australian fisheries (i.e. excluding aquaculture) production of crustaceans (largely prawns, rock lobster and crab) was 41,000 tonnes in 2006/7, worth $778 million. Production from mollusc (largely abalone, scallops, oysters and squid) fisheries was 39,000 tonnes, worth $502 million. Together, in 2006/7 crustacean and mollusc fisheries represented 58% of the total value of Australian wild fisheries production. Sustainable management of Australia’s invertebrate fisheries is frustrated by the lack of data on species-specific growth rates. This project investigated a new method to estimate age, and hence individual growth rates, in invertebrate fisheries species. The principle behind the new aging method was that telomeres (i.e. DNA end-caps of chromosomes) get shorter as an individual gets older. We studied commercial crustacean and molluscan species. A vertebrate fish species (silver perch, Bidyanus bidyanus) was used as a control to standardise our work against the literature. We found a clear relationship between telomere length and shell size for temperate abalone (Haliotis rubra). Further research is recommended before the method can be implemented to assist management of wildharvested abalone populations. Age needs to be substituted for shell size in the relationship and it needs to be studied for abalone from several regions. This project showed that telomere length declined with increasing age in Sydney rock oysters (Saccostrea glomerata) and was affected by regional variation. A relationship was not apparent between telomere length and age (or size as a surrogate for age) for crustacean species (school prawns, Metapenaeus macleayi; eastern rock lobster, Sagmariasus verreauxi; southern rock lobster, Jasus edwardsii; and spanner crabs, Ranina ranina). For school prawns, there was no difference between telomere length in males and females. Further research is recommended, however, as telomeric DNA from crustaceans was difficult to analyse using the terminal restriction fragment (TRF) assay. Telomere lengths of spanner crabs and lobsters were at the upper limit of resolution of the assay used and results were affected by degradation and possible contamination of telomeric DNA. It is possible that telomere length is an indicator of remaining lifespan in molluscan and crustacean individuals, as suggested for some vertebrate species (e.g. Monaghan, 2010). Among abalone of similar shell size and among lobster pueruli, there was evidence of individuals having significantly longer or shorter telomeres than the group average. At a population level, this may be a surrogate for estimates of future natural mortality, which may have usefulness in the management of those populations. The method used to assay telomere length (terminal restriction fragment assay) performed adequately for most species, but it was too expensive and time-consuming to be considered a useful tool for gathering information for fisheries management. Research on alternative methods is strongly recommended.