14 resultados para Age of the fish
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Summary: This research represents the first age-based demographic assessment of pearl perch, Glaucosoma scapulare (Ramsay, 1881), a highly valued species endemic to coastal waters off central eastern Australia. The study was conducted across the species' distribution that encompasses two state jurisdictions (Queensland in the north and New South Wales in the south) using data collected approximately 10 years apart in each state. Estimates of age were made by counting annuli (validated using marginal increment ratios) in sectioned sagittal otoliths. The maximum estimated age was 19 years. Pearl perch attained approx. 12 cm fork length (FL) after one year, 21 cm FL after 2 years and 29 cm FL after 3 years. Fish from the southern end of the species' distribution grew significantly more slowly than those from the northern part of its range. Commercial landings in the north were characterized by greater proportions of larger (>40 cm FL) and older (>6 years) fish than those in the south, with landings mainly of fish between 3 and 6 years of age. The observed variations in age-based demographics of pearl perch highlight the need for a better understanding of patterns of movement and reproduction in developing a model of population dynamics and life-history for this important species. There is a clear need for further, concurrent, age-based studies on pearl perch in the northern and southern parts of its distribution to support the conclusions of the present study based on data collected a decade apart. © 2013 Blackwell Verlag GmbH.
Resumo:
The reproductive biology of the red throat emperor, Lethrinus miniatus (Schneider, 1801) was examined in the southern Great Barrier Reef (GBR), Australia. The species was found to display the characteristics of an incomplete metagynous hermaphrodite based on histological evidence and size frequency information. Over 95% of functional males possessed a remnant lumen, but there was no evidence of oocytes in the testes of males. A single transitional fish was sampled which had both ovarian and testicular tissue present in its gonad. Size frequency data showed that females dominated the smaller size classes with the majority of fish < 40 cm being females. Lethrinus miniatus had an extended spawning season from July-November, although spawning was more pronounced during the spring. Spawning was initiated earlier at lower latitudes. There was no particular size or age when sex change occurred since females older than 20 and males as young as 2-yrs old were sampled.
Resumo:
Data on catch sizes, catch rates, length-frequency and age composition from the Australian east coast tailor fishery are analysed by three different population dynamic models: a surplus production model, an age-structured model, and a model in which the population is structured by both age and length. The population is found to be very heavily exploited, with its ability to reproduce dependent on the fishery’s incomplete selectivity of one-year-old fish. Estimates of recent harvest rates (proportion of fish available to the fishery that are actually caught in a single year) are over 80%. It is estimated that only 30–50% of one-year-old fish are available to the fishery. Results from the age-length-structured model indicate that both exploitable biomass (total mass of fish selected by the fishery) and egg production have fallen to about half the levels that prevailed in the 1970s, and about 40% of virgin levels. Two-year-old fish appear to have become smaller over the history of the fishery. This is assumed to be due to increased fishing pressure combined with non-selectivity of small one-year-old fish, whereby the one-year-old fish that survive fishing are small and grow into small two-year-old fish the following year. An alternative hypothesis is that the stock has undergone a genetic change towards smaller fish; the true explanation is unknown. The instantaneous natural mortality rate of tailor is hypothesised to be higher than previously thought, with values between 0.8 and 1.3 yr–1 consistent with the models. These values apply only to tailor up to about three years of age, and it is possible that a lower value applies to fish older than three. The analysis finds no evidence that fishing pressure has yet affected recruitment. If a recruitment downturn were to occur, however, under current management and fishing pressure there is a strong chance that the fishery would need a complete closure for several years to recover, and even then recovery would be uncertain. Therefore it is highly desirable to better protect the spawning stock. The major recommendations are • An increase in the minimum size limit from 30cm to 40cm in order to allow most one-year-old fish to spawn, and • An experiment on discard mortality to gauge the proportion of fish between 30cm and 40cm that are likely to survive being caught and released by recreational line fishers (the dominant component of the fishery, currently harvesting roughly 1000t p.a. versus about 200t p.a. from the commercial fishery).
Resumo:
Although migration patterns for various life history stages of the chokka squid (Loligo reynaudii) have been previously presented, there has been limited comparison of spatial variation in biological parameters. Based on data from research surveys; size ranges of juveniles, subadults and adults on the Agulhas Bank were estimated and presented spatially. The bulk of the results appear to largely support the current acceptance of the life cycle with an annual pattern of squid hatching in the east, migrating westwards to offshore feeding grounds on the Central and Western Agulhas Bank and the west coast and subsequent return migration to the eastern inshore areas to spawn. The number of adult animals in deeper water, particularly in autumn in the central study area probably represents squid spawning in deeper waters and over a greater area than is currently targeted by the fishery. The distribution of life history stages and different feeding areas does not rule out the possibility that discrete populations of L. reynaudii with different biological characteristics inhabit the western and eastern regions of the Agulhas Bank. In this hypothesis, some mixing of the populations does occur but generally squid from the western Agulhas Bank may occur in smaller numbers, grow more slowly and mature at a larger size. Spawning occurs on the western portion of the Agulhas Bank, and juveniles grow and mature on the west coast and the central Agulhas Bank. Future research requirements include the elucidation of the age structure of chokka squid both spatially and temporally, and a comparison of the statolith chemistry and genetic characterisation between adults from different spawning areas across the Agulhas Bank.
Resumo:
Relationships between freshwater flows and growth rates of the opportunistic predatory finfish barramundi Lates calcarifer in a dry tropical estuary were examined using data from a long-term tag-recapture programme. Lagged effects were not investigated. After accounting for length at release, time at liberty and seasonal variation (e.g. winter, spring, summer and autumn), growth rates were significantly and positively related to fresh water flowing to the estuary. Effects were present at relatively low levels of freshwater flow (i.e. 2.15 m3 s-1, the 5th percentile of the mean flow rate experienced by fish in the study during time at liberty). The analysis, although correlative, provides quantitative evidence to support the hypothesis that freshwater flows are important in driving the productivity of estuaries and can improve growth of species high in the trophic chain.
Resumo:
Including collaboration with industry members as an integral part of research activities is a relatively new approach to fisheries research. Earlier approaches to involving fishers in research usually involved compulsory accommodations of research, such as through compulsory observer programs, in which fishers were seen as subjects of rather than participants in research. This new approach brings with it significant potential benefits but also some unique issues both for the researchers and the participating industry members. In this paper we describe a research project involving the Queensland Coral Reef Finfish Fishery that originated from industry and community concerns about changes in marketing practices in an established commercial line fishery. A key aspect of this project was industry collaboration in all stages of the research, from formulation of objectives to assistance with interpretation of results. We discuss this research as a case study of some of the issues raised by collaboration between industry and research groups in fisheries research and the potential pitfalls and benefits of such collaborations for all parties. A dedicated liaison and extension strategy was a key element in the project to develop and maintain the relationships between fishers and researchers that were fundamental to the success of the collaboration. A major research benefit of the approach was the provision of information not available from other sources: 300 days of direct and unimpeded observation of commercial fishing by researchers; detailed catch and effort records from a further 126 fishing trips; and 53 interviews completed with fishers. Fishers also provided extensive operational information about the fishery as well as ongoing support for subsequent research projects. The time and resources required to complete the research in this consultative framework were greater than for more traditional, researcher-centric fisheries research, but the benefits gained far outweighed the costs.
Resumo:
The red-finned blue-eye (Scaturiginichthys vermeilipinnis) is endemic to a single complex of springs emanating from the Great Artesian Basin, Australia. The species has been recorded as naturally occurring in eight separate very shallow (generally <20 mm) springs, with a combined wetland area of ~0.3 ha. Since its discovery in 1990, five red-finned blue-eye (RFBE) populations have been lost and subsequent colonisation has occurred in two spring wetlands. Current population size is estimated at <3000 individuals. Artesian bores have reduced aquifer pressure, standing water levels and spring-flows in the district. There is evidence of spatial separation within the spring pools where RFBE and the introduced fish gambusia (Gambusia holbrooki) co-occur, although both species are forced together when seasonal extremes affect spring size and water temperature. Gambusia was present in four of the five springs where RFBE populations have been lost. Four out of the five remaining subpopulations of RFBE are Gambusia free. Circumstantial evidence suggests that gambusia is a major threat to red-finned blue-eyes. The impact of Gambusia is probably exacerbated by domestic stock (cattle and sheep), feral goats and pigs that utilise the springs and can negatively affect water quality and flow patterns. Three attempts to translocate RFBE to apparently suitable springs elsewhere within the complex have failed. Opportunities to mitigate threats are discussed, along with directions for future research to improve management of this extremely threatened fish and habitat.
Resumo:
This report summarises work conducted by the QDPI, in partnership with the South Burdekin Water Board (SBWB) and the Burdekin Shire Council (BSC) between 2001 and 2003. The broad aim of the research was to assess the potential of native fish as biocontrol agents for noxious weeds, as part of an integrated program for managing water quality in the Burdekin Irrigation Area. A series of trials were conducted at, or using water derived from, the Sandy Creek Diversion near Groper Creek (lower Burdekin delta). Trials demonstrated that aquatic weeds play a positive role in trapping transient nutrients, until such time that weed growth becomes self-shading and weed dieback occurs, which releases stored nutrients and adversely affects water quality. Transient nutrient levels (av. TN<0.5mg/L; av. TP<0.1mg/L) found in the irrigation channel during the course of this research were substantially lower than expected, especially considering the intensive agriculture and sewage effluent discharge upstream from the study site. This confirms the need to consider the control of weeds rather than complete weed extermination when formulating management plans. However, even when low nutrient levels are available, there is competitive exploitation of habitat variables in the irrigation area leading to succession and eventual domination by certain weed species. During these trials, we have seen filamentous algae, phytoplankton, hyacinth and curled pondweed each hold competitive advantage at certain points. However without intervention, floating weeds, especially hyacinth, ultimately predominate in the Burdekin delta due to their fast propagation rate and their ability to out-shade submerged plants. We have highlighted the complexity of interactions in these highly disturbed ecosystems in that even if the more prevalent noxious weeds are contained, other weed species will exploit the vacant niche. This complexity places stringent requirements on the type of native fish that can be used as biocontrol agents. Of the seven fish species identified with herbivorous trophic niches, most target plankton or algae and do not have the physical capacity to directly eat the larger macrophytes of the delta. We do find however that following mechanical weed harvesting, inoculative releases of fish can slow the rate of hyacinth recolonisation. This occurs by mechanisms in addition to direct weed consumption, such as disturbing growth surfaces by grazing on attached biofilms. Predation by birds and water rats presents another impediment to the efficacy of large-scale releases of fish. However, alternative uses of fish in water quality management in the Burdekin irrigation area are discussed.
Resumo:
Invasive macrophyte species are a threat to native biodiversity and often grow to nuisance levels, therefore, making control options necessary. Macrophyte control can have pronounced impacts on littoral fish by reducing habitat heterogeneity and the loss of profitable (high density of invertebrates) foraging areas. Yet, there is little known about the impacts of macrophyte removal on invertebrates themselves. We conducted a macrophyte removal experiment, that is the cutting of channels into dense macrophyte beds, to investigate the impact of mechanical macrophyte control on invertebrate and fish communities in a littoral zone dominated by the invasive macrophyte Lagarosiphon major. The effect of macrophyte removal had only a temporary effect on macrophyte areal cover (4 months). Nevertheless, the treatment increased light penetration significantly. However, we could not detect any difference in epiphyton biomass. Invertebrate biomass increased in macrophyte stands 4 months after treatment and there was a shift in the invertebrate community composition. Mechanical control had no effect on invertebrate biodiversity. The higher invertebrate biomass did not translate into a higher fish density in the treated areas. The results of this study indicated that partial mechanical removal is a suitable option to control unwanted macrophyte stands.
Resumo:
Life history characteristics were used to determine the stock structure of the polynemid Eleutheronema tetradactylum across northern Australia. Growth, estimated from back-calculated length-at-age from sagittal otoliths, and length at sex change were estimated from samples collected from 12 different locations across western, northern and eastern Australia between 2007 and 2009. Comparison of back-calculated length-at-age, growth and length at sex change between locations revealed significant variation in the life-history characteristics of E. tetradactylum across northern Australia, with significant differences detected in 43 of 45 location comparisons. Differences in otolith size relative to fish length also existed amongst locations. No differences in other morphometric relationships were detected. The results of this study provide evidence for a high degree of spatial population subdivision for E. tetradactylum across northern Australia, the finding of which has implications for E. tetradactylum fisheries throughout its range, and provides a biological basis for spatial management of the species in Australia. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
An economic survey of the commercial operators currently active in the Queensland Coral Reef Fin-Fish Fishery has been carried out, as part of a research project aimed at evaluating alternative management options for this fishery. This paper presents the background analysis used as a basis to develop the sampling design for this survey. The background analysis focuses on activity patterns of the fleet based on effort and catch information, as well as patterns of quota ownership. Based on this information, a fishing business profile describing the micro-economic structure of fishing operations is developed. This profile, in conjunction with the qualitative information gained in undertaking the economic surveys, allows preliminary understanding of the key drivers of profitability in the CRFFF, and possible impacts of external factors on fishing operations.
Resumo:
OBJECTIVES: 1. To determine whether incomplete rigor mortis resolution and 'cold shock' play a role in development of tough fish syndrome (TFS) in tropical Saddletail snapper. 2. To identify links between TFS and specific physiological factors in tropical Saddletail snapper. 3. Communicate findings and recommendations to stakeholders and assist with implementation of any changes to fishing or handling practices required.