7 resultados para Adjoining landowners.

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our evaluation of the predation of calves by wild dogs in the 1990s found that the number of calves killed and frequency of years that calf losses occurred, is higher in baited areas compared to adjoining, non-baited areas of similar size. Calf losses were highest with poor seasonal conditions, low prey numbers and where baited areas were re-colonised by wild dogs soon after baiting. We monitored wild dog “activity” before and after 35 baiting programs in southwest, central west and far north Queensland between 1994 and 2006 and found change in activity depends on the timing of the baiting. Baiting programs conducted between October and April show an increase in dog activity post-baiting (average increase of 219.1%, SEM 100.9, n=9, for programs conducted in October and November; an increase of 82.5%, SEM 54.5, n=7 for programs conducted in March and April; and a decrease in activity of 46.5%, SEM 10.2, n=19 for programs conducted between May and September). We monitored the seasonal activity and dispersal of wild dogs fitted with satellite transmitters 2006 to present. We have found that: • Activity of breeding males and females, whilst rearing and nurturing pups, is focussed around the den between July to September and away from areas of human activity. Activity of breeding groups appears to avoid locations of human activity until juveniles become independent (around late November). • While independent and solitary yearlings often have unstable, elliptically-shaped territories in less favourable areas, members of breeding groups have territories that appear seasonally stable and circular located in more favourable habitats. • Extra-territorial forays of solitary yearlings can be huge, in excess of 200 km. The largest forays we have monitored have occurred when the activity of pack members is focussed around rearing pups and juveniles (August to November). • Where wild dogs have dispersed or had significant territorial expansion, it has occurred within days of baiting programs and onto recently baited properties. • The wild dogs we have tracked have followed netting barrier fences for hundreds of kilometres and lived adjacent to or bypassed numerous grids in the barrier. Based on these studies, we conclude that a proportion of the perceived decline in dog activity between May and September, post baiting, is due to a decline in dog activity in areas associated with human activity. The increase in dog activity post-baiting between October and May (and increased calf predation on baited properties) is likely caused by wild dogs dispersing (juveniles and yearlings) or expanding (adults) their territory into baited, now ‘vacant’, areas. We hypothesise that baiting programs should be focussed in summer and autumn commencing late November as soon as juveniles become independent of adults. We also hypothesise that instead of large, annual or semi-annual baiting programs, laying the same number of baits over 4-6 weeks may be more effective. These hypotheses need to be tested through an adaptive management project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface losses of nitrogen from horticulture farms in coastal Queensland, Australia, may have the potential to eutrophy sensitive coastal marine habitats nearby. A case-study of the potential extent of such losses was investigated in a coastal macadamia plantation. Nitrogen losses were quantified in 5 consecutive runoff events during the 13-month study. Irrigation did not contribute to surface flows. Runoff was generated by storms at combined intensities and durations that were 20–40 mm/h for >9 min. These intensities and durations were within expected short-term (1 year) and long-term (up to 20 years) frequencies of rainfall in the study area. Surface flow volumes were 5.3 ± 1.1% of the episodic rainfall generated by such storms. Therefore, the largest part of each rainfall event was attributed to infiltration and drainage in this farm soil (Kandosol). The estimated annual loss of total nitrogen in runoff was 0.26 kg N/ha.year, representing a minimal loading of nitrogen in surface runoff when compared to other studies. The weighted average concentrations of total sediment nitrogen (TSN) and total dissolved nitrogen (TDN) generated in the farm runoff were 2.81 ± 0.77% N and 1.11 ± 0.27 mg N/L, respectively. These concentrations were considerably greater than ambient levels in an adjoining catchment waterway. Concentrations of TSN and TDN in the waterway were 0.11 ± 0.02% N and 0.50 ± 0.09 mg N/L, respectively. The steep concentration gradient of TSN and TDN between the farm runoff and the waterway demonstrated the occurrence of nutrient loading from the farming landscapes to the waterway. The TDN levels in the stream exceeded the current specified threshold of 0.2–0.3 mg N/L for eutrophication of such a waterway. Therefore, while the estimate of annual loading of N from runoff losses was comparatively low, it was evident that the stream catchment and associated agricultural land uses were already characterised by significant nitrogen loadings that pose eutrophication risks. The reported levels of nitrogen and the proximity of such waterways (8 km) to the coastline may have also have implications for the nearshore (oligotrophic) marine environment during periods of turbulent flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grazing for Healthy Coastal Wetlands has been developed to provide graziers, landowners and extension officers with information on managing grazing in and around Queensland’s coastal wetlands to maintain healthy coastal wetlands and productive grazing enterprises. It provides practical advice on how grazing and associated land management practices can be implemented to support the long-term health of coastal wetlands whilst maintaining production. The guidelines have been compiled from published literature, grazier knowledge, wetlands managers and the experience of extension and natural resource management professionals. They reflect the current knowledge of suitable management practices for coastal wetlands. They are designed to complement and be considered in conjunction with existing information resources including the EDGEnetwork Grazing Land Management series and best management practice guidelines from regional Natural Resource Management (NRM) groups. While the recommendations apply broadly to Queensland’s coastal wetlands, regional, catchment and landscape-scale variations in wetland characteristics and the objectives of the individual grazing enterprise should be taken into account in planning and deciding management actions for wetlands. An individual grazing property may even have a range of wetland types with different management needs and objectives which should be identified during whole of property planning. Specific land and wetland management advice should also be sought from local grazing extension officers and NRM professionals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Swan’s Lagoon, which is 125 km south-south-west of Townsville, was purchased by the Queensland Government as a beef cattle research station in 1961. It is situated within the seasonally-dry tropical spear grass region of North Queensland. The station was expanded from 80 km2 to 340 km2 by purchase of the adjoining Expedition block in 1978. The first advisory committee formed and initiated research in 1961. The median annual rainfall of 708 mm (28 inches) is highly variable, with over 80% usually falling in December–April. Annual evaporation is 2.03 metres. The 60% of useable area is mostly flat with low fertility duplex soils, of which more than 50% is phosphorus deficient. Natural spear grass-based pastures predominate over the station. Swan’s Lagoon research has contributed to understanding the biology of many aspects of beef production for northern Australia. Research outcomes have provided options to deal with the region’s primary challenges of weaning rates averaging less than 60%, annual growth rates averaging as little as 100 kg, high mortality rates and high management costs. All these relate to the region’s variable and highly seasonal rainfall—challenges that add to insect-borne viruses, ticks, buffalo fly and internal parasites. As well as the vast amount of practical beef production science produced at Swan’s Lagoon, generations of staff have been trained there to support beef producers throughout Queensland and northern Australia to increase their business efficiency. The Queensland Government has provided most of the funds for staffing and operations. Strong beef industry support is reflected in project funding from meat industry levies, managed by Meat and Livestock Australia (MLA) and its predecessors. MLA has consistently provided the majority of operational research funding since the first grant for ‘Studies of management practices, adaption of different breeds and strains to tropical environments, and studies on tick survival and resistance’ in 1962–63. A large number of other agencies and commercial companies have also supported research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To evaluate the role of using forage, shade and shelterbelts in attracting birds into the range, three trials were undertaken with free range layers both on a research facility and on commercial farms. Each of the trials on the free range research facility in South Australia used a total of 120 laying hens (Hyline Brown). Birds were housed in an eco-shelter which had 6 internal pens of equal size with a free range area adjoining the shelter. The on-farm trials were undertaken on commercial free range layer farms in the Darling Downs in Southeast Queensland with bird numbers on farms ranging from 2,000-6,800 hens. The first research trial examined the role of shaded areas in the range; the second trial examined the role of forage and the third trial examined the influence of shelterbelts in the range. These treatments were compared to a free range area with no enrichment. Aggressive feather pecking was only observed on a few occasions in all of the trials due to the low bird numbers housed. Enriching the free range environment attracted more birds into the range. Shaded areas were used by 18% of the hens with a tendency (p = 0.07) for more hens to be in the paddock. When forage was provided in paddocks more control birds (55%) were observed in the range in morning than in the afternoon (30%) while for the forage treatments 45% of the birds were in the range both during the morning and afternoon. When shelterbelts were provided there was a significantly (p<0.05) higher % of birds in the range (43% vs. 24%) and greater numbers of birds were observed in areas further away from the poultry house. The results from the on-farm trials mirrored the research trials. Overall 3 times more hens used the shaded areas than the non shaded areas, with slightly more using the shade in the morning than in the afternoon. As the environmental temperature increased the number of birds using the outdoor shade also increased. Overall 17 times more hens used the shelterbelt areas than the control areas, with slightly more using the shelterbelts in the afternoon than in the morning. Approximately 17 times more birds used the forage areas compared to the control area in the corresponding range. There were 8 times more birds using a hay bale enriched area compared to the area with no hay bales. The use of forage sources (including hay bales) were the most successful method on-farm to attract birds into the range followed by shelterbelts and artificial shade. Free range egg farmers are encouraged to provide pasture, shaded areas and shelterbelts to attract birds into the free range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wild dogs (Canis lupus dingo and hybrids) are routinely controlled to protect beef cattle from predation yet beef producers are sometimes ambivalent as to whether wild dogs are a significant problem or not. This paper reports the loss of calves between birth and weaning in pregnancy-tested herds located on two beef cattle properties in south-central and far north Queensland for up to 4 consecutive years. Comparisons of lactation failures (identified when dams that previously tested pregnant were found non-lactating at weaning) were made between adjoining test herds grazed in places with or without annual (or twice annual) wild dog poison baiting programs. No correlation between wild dog relative abundance and lactation failures was apparent. Calf loss was frequently higher (three in 7 site-years, 11–32%) in baited areas than in non-baited areas (9% in 1 of 7 site-years). Predation loss of calves (in either area) only occurred in seasons of below-average rainfall, but was not related to herd nutrition. These data suggest that controlling wild dogs to protect calves on extensive beef cattle enterprises is unnecessary in most years because wild dogs do not routinely prey on calves. In those seasons when wild dog predation might occur, baiting can be counter-productive. Baiting appears to produce perturbations that change the way surviving or re-colonising wild dog populations select and handle prey and/or how they interact with livestock.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A serological survey of cattle from throughout Queensland and sheep from cattle/sheep interface areas was conducted to determine the distribution and prevalence of antibodies to Bluetongue virus serotypes. This information allowed preliminary designation of arbovirusfree zones and identification of livestock populations at greatest risk to introduction of exotic Bluetongue viruses. Throughout the state antibodies were detected to only serotypes I and 21. In cattle prevalence decreased with increasing distance from the coast ringing from 73% in the far north to less than I% in the southwest. In sheep, prevalence of bluetongue antibodies in the major cattle/sheep interface areas in the north-west and central Queensland ranged from O% to 5%. A system of strategically placed sentinel herds of 10 young serologically negative cattle was established across northern Australia to monitor the distribution and seasonality of bluetongue viruses. Initially 23 herds were located in Queensland, 4 in Northern Territory and 2 in Western Australia but by the completion of the project the number of herds in Queensland had been reduced to 12. No bluetongue virus activity was detected in Western Australia or Northern Territory herds throughout the project although testing of one herd in Northern Territory with a history of bluetongue activity was not done after June 1991. In Queensland, activity to bluetongue serotypes I and 21 was detected in all years of the project. Transmissions occurred predominantly in the period April to September and were more widespread in wetter years' The pathogenic bluetongue setotypes previously isolated from the Northern Territory have not spread to adjoining States.