4 resultados para A. Nano-structures

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Postharvest treatments with nano-silver (NS) significantly improve water relations and therefore prolong the vase life of several cut flowers, including rose (Rosa hybrida cv. Movie Star). The efficacy of NS in alleviating bacterial related blockage in the stem-ends of cut cv. Movie Star was further investigated. Four dominant bacteria strains Pseudomonas fluorescens, Aeromonas sp., Comamonas acidovorans and Chryseomonas luteola were isolated from the stem-ends of cut roses. High numbers of the isolated bacteria at 10 8colony forming unitsmL -1 vase solution led to a sharp reduction in vase life, flower fresh weight, and water uptake. In vitro assessments of the antibacterial activity of NS against the four bacterial strains was >80% at 5mgL -1 and nearly 100% at 50mgL -1. Bacterial blockage in the stem-ends of cut cv. Movie Star roses with and without NS pulse treatments was assessed during the vase period using scanning electron microscopy. Following a 50mgL -1 NS pulse treatment, there were few bacterial cells on the cut surface of the stems even on day 7. Moreover, no obvious bacterial blockage was observed inside the xylem vessels. In contrast, the cut surface of control stems was covered with bacteria and associated amorphous substances, and numerous bacteria were found in the xylem vessels. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative efficacies of three chemically different nano-silver (NS) formulations were evaluated for their potential to extend the vase life of short-lived cut Acacia holosericea foliage. The novel proprietary formulations were neutral NS, acidic NS and ionic NS. They were characterised in terms of particle size, pH value, colour and odour. The NS treatments were applied as vase (lower concentrations) or pulse (higher concentrations) solutions. Among the treatments compared, neutral NS as a 4 mg L-1 vase solution or as a 40 mg L-1 24 h pulse treatment and acidic NS as a 0.5 mg L-1 vase solution or as a 5 mg L-1 24 h pulse treatment significantly (P <= 0.05) extended the vase life of A. holosericea. Vase life extensions over the deionised water (DI) controls were associated with better maintenance of relative fresh weight and vase water uptake, suppression of bacterial growth in the vase water and stem-end, and delaying stem blockage. In contrast, ionic-NS applied as a 0.5 or 1 mg L-1 vase solution treatment or as a 5 or 10 mg L-1 pulse treatment caused severe phytotoxicity to cut A. holosericea stems. The results suggest that NS treatments, especially neutral NS and acidic NS pulse treatments, could be a potential postharvest technology for commercial application to cut A. holosericea. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to their efficiency, lightweight, ease of erection and low cost, steel and aluminium thin-walled structures have become very popular in the construction industry over the past few decades. Applications include roof and wall systems (purlins and girts), storage racks, and composite concrete and steel slabs. The effectiveness of these structures lies in the cross-sectional shape of the profiles which enhances their strength by controlling the three fundamental buckling modes: local, distortional, and global. However, despite the attractiveness of these structures, steel and aluminium are greenhouse gas intensive materials and do not produce sustainable structural products. This paper presents an investigation performed at the Griffith School of Engineering, Griffith University, which shows manufacturing these types of profiles in timber is possible. Short composite thinwalled timber Cee-sections (500 mm long) were fabricated by gluing together thin softwood (Araucaria cunninghamii) veneers (1 mm thick). Two types of Ceesections were considered, one with a web stiffener to increase the local buckling capacity of the profile and one without. The profiles were tested in compression and the test results are presented and discussed in the paper in terms of structural behaviour and performance. Further research directions are proposed in order to provide efficient and lightweight sustainable structural products to the timber industry. © RILEM 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using benzene as a candidate air toxicant and A549 cells as an in vitro cell model, we have developed and validated a hanging drop (HD) air exposure system that mimics an air liquid interface exposure to the lung for periods of 1 h to over 20 days. Dose response curves were highly reproducible for 2D cultures but more variable for 3D cultures. By comparing the HD exposure method with other classically used air exposure systems, we found that the HD exposure method is more sensitive, more reliable and cheaper to run than medium diffusion methods and the CULTEX (R) system. The concentration causing 50% of reduction of cell viability (EC50) for benzene, toluene, p-xylene, m-xylene and o-xylene to A549 cells for 1 h exposure in the HD system were similar to previous in vitro static air exposure. Not only cell viability could be assessed but also sub lethal biological endpoints such as DNA damage and interleukin expressions. An advantage of the HD exposure system is that bioavailability and cell concentrations can be derived from published physicochemical properties using a four compartment mass balance model. The modelled cellular effect concentrations EC50(cell) for 1 h exposure were very similar for benzene, toluene and three xylenes and ranged from 5 to 15 mmol/kg(dry weight) which corresponds to the intracellular concentration of narcotic chemicals in many aquatic species, confirming the high sensitivity of this exposure method. (C) 2013 Elsevier B.V. All rights reserved.