3 resultados para 857
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Sleepy cod Oxyeleotris lineolatus is a species of freshwater goby in demand in Australian markets by consumers of Asian origin. It is related to marble goby Oxyeleotris marmoratus, the most expensive freshwater food fish in Asia, which is cultured throughout southeast Asia in ponds and cages. The performance of sleepy cod in culture conditions was investigated to assess the viability of farming them in northern Australia. Sleepy cod fingerlings (62.8 +/- 0.8 mm total length and 2.56 +/- 0.095 g) were stocked into experimental ponds at 32,857 fish/ha, and grown out for 8 mo. Shelter was provided in each of three replicate ponds and was absent in three control ponds. The provision of shelter in juvenile growout was found to be of no benefit, although fish in ponds provided with shelter weighed slightly more per unit length than fish in ponds without shelter. Cannibalism was not a problem in growout, and survival was close to 100%. After the shelter trial was completed, fish were graded into large and small classes (three replicates of each), and grown out without shelter at the same density for 158 d. Following that, fish were again graded, and the largest 30% retained from growout at a density of 8,857 fish/ha (large, 198 +/-6.44 g) or 10,000 fish/ha (small, 48.9 +/-1.27 g). These were grown out for 188 d. Growth of selected stock at low densities was slower than earlier growth rates, although smaller fish gained weight more rapidly than larger fish. Growth rates were better than the only published data for marble goby. Further investigation into high density culture and different genotypes of sleepy cod needs to be undertaken to determine the viability of pond culture.
Resumo:
Control of wheat rusts in north-eastern Australia has been based on resistance breeding since the early 1920s. It has been an enduring journey of discovery, disappointment, and achievement, which has culminated in a pool of knowledge and expertise upon which today's plant breeders can efficiently target durable resistance to the major rust diseases. This paper outlines significant advances in genetic control of rusts in the region, with particular emphasis on the invaluable role played by the University of Sydney rust control program and its influence on wheat breeding in the region and throughout Australia. This paper is part of ‘Global Landscapes in Cereal Rust Control’, see Aust. J. Agric. Res. Vol. 58, no. 6.
Resumo:
1. Some of the most damaging invasive plants are dispersed by frugivores and this is an area of emerging importance in weed management. It highlights the need for practical information on how frugivores affect weed population dynamics and spread, how frugivore populations are affected by weeds and what management recommendations are available. 2. Fruit traits influence frugivore choice. Fruit size, the presence of an inedible peel, defensive chemistry, crop size and phenology may all be useful traits for consideration in screening and eradication programmes. By considering the effect of these traits on the probability, quality and quantity of seed dispersal, it may be possible to rank invasive species by their desirability to frugivores. Fruit traits can also be manipulated with biocontrol agents. 3. Functional groups of frugivores can be assembled according to broad species groupings, and further refined according to size, gape size, pre- and post-ingestion processing techniques and movement patterns, to predict dispersal and establishment patterns for plant introductions. 4. Landscape fragmentation can increase frugivore dispersal of invasives, as many invasive plants and dispersers readily use disturbed matrix environments and fragment edges. Dispersal to particular landscape features, such as perches and edges, can be manipulated to function as seed sinks if control measures are concentrated in these areas. 5. Where invasive plants comprise part of the diet of native frugivores, there may be a conservation conflict between control of the invasive and maintaining populations of the native frugivore, especially where other threats such as habitat destruction have reduced populations of native fruit species. 6. Synthesis and applications. Development of functional groups of frugivore-dispersed invasive plants and dispersers will enable us to develop predictions for novel dispersal interactions at both population and community scales. Increasingly sophisticated mechanistic seed dispersal models combined with spatially explicit simulations show much promise for providing weed managers with the information they need to develop strategies for surveying, eradicating and managing plant invasions. Possible conservation conflicts mean that understanding the nature of the invasive plant-frugivore interaction is essential for determining appropriate management.