11 resultados para 825-6
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The major cuticular hydrocarbons from the cane beetle species Antitrogus parvulus were deduced to be 4,6,8,10,16,18-hexa- and 4,6,8,10,16- pentamethyldocosanes 2 and 3, respectively. Isomers of 2,4,6,8-tetramethylundecanal 27, 36, and 37, derived from 2,4,6-trimethylphenol, were coupled with the phosphoranes 28 and 29 to furnish alkenes and, by reduction, diastereomers of 2 and 3. Chromatographic and spectroscopic comparisons confirmed 2 as either 6a or 6b and 3 as either 34a or 34b.
Resumo:
Runoff and sediment loss from forest roads were monitored for a two-year period in a Pinus plantation in southeast Queensland. Two classes of road were investigated: a gravelled road, which is used as a primary daily haulage route for the logging area, and an ungravelled road, which provides the main access route for individual logging compartments and is intensively used as a haulage route only during the harvest of these areas (approximately every 30 years). Both roads were subjected to routine traffic loads and maintenance during the study. Surface runoff in response to natural rainfall was measured and samples taken for the determination of sediment and nutrient (total nitrogen, total phosphorus, dissolved organic carbon and total iron) loads from each road. Results revealed that the mean runoff coefficient (runoff depth/rainfall depth) was consistently higher from the gravelled road plot with 0.57, as compared to the ungravelled road with 0.38. Total sediment loss over the two-year period was greatest from the gravelled road plot at 5.7 t km−1 compared to the ungravelled road plot with 3.9 t km−1. Suspended solids contributed 86% of the total sediment loss from the gravelled road, and 72% from the ungravelled road over the two years. Nitrogen loads from the two roads were both relatively constant throughout the study, and averaged 5.2 and 2.9 kg km−1 from the gravelled and ungravelled road, respectively. Mean annual phosphorus loads were 0.6 kg km−1 from the gravelled road and 0.2 kg km−1 from the ungravelled road. Organic carbon and total iron loads increased in the second year of the study, which was a much wetter year, and are thought to reflect the breakdown of organic matter in roadside drains and increased sediment generation, respectively. When road and drain maintenance (grading) was performed runoff and sediment loss were increased from both road types. Additionally, the breakdown of the gravel road base due to high traffic intensity during wet conditions resulted in the formation of deep (10 cm) ruts which increased erosion. The Water Erosion Prediction Project (WEPP):Road model was used to compare predicted to observed runoff and sediment loss from the two road classes investigated. For individual rainfall events, WEPP:Road predicted output showed strong agreement with observed values of runoff and sediment loss. WEPP:Road predictions for annual sediment loss from the entire forestry road network in the study area also showed reasonable agreement with the extrapolated observed values.
Resumo:
Araucaria cunninghamii (hoop pine) typically occurs as an emergent tree over subtropical and tropical rainforests, in a discontinuous distribution that extends from West Irian Jaya at about 0°30'S, through the highlands of Indonesian New Guinea and Papua New Guinea, along the east coast of Australia from 11°39'S in Queensland to 30°35'S in northern New South Wales. Plantations established in Queensland since the 1920s now total about 44000 ha, and constitute the primary source for the continuing supply of hoop pine quality timber and pulpwood, with a sustainable harvest exceeding 440 000 m3 y-1. Establishment of these managed plantations allowed logging of all native forests of Araucaria species (hoop pine and bunya pine, A. bidwillii) on state-owned lands to cease in the late 1980s, and the preservation of large areas of araucarian forest types within a system of state-owned and managed reserves. The successful plantation program with this species has been strongly supported by genetic improvement activities since the late 1940s - through knowledge of provenance variation and reproductive biology, the provision of reliable sources of improved seed, and the capture of substantial genetic gains in traits of economic importance (for example growth, stem straightness, internode length and spiral grain). As such, hoop pine is one of the few tropical tree species that, for more than half a century, has been the subject of continuous genetic improvement. The history of commercialisation and genetic improvement of hoop pine provides an excellent example of the dual economic and conservation benefits that may be obtained in tropical tree species through the integration of gene conservation and genetic improvement with commercial plantation development. This paper outlines the natural distribution and reproductive biology of hoop pine, describes the major achievements of the genetic improvement program in Queensland over the past 50+ y, summarises current understanding of the genetic variation and control of key selection traits, and outlines the means by which genetic diversity in the species is being conserved.
Resumo:
BACKGROUND: Field studies of diuron and its metabolites 3-(3,4-dichlorophenyl)-1-methylurea (DCPMU), 3,4-dichlorophenylurea (DCPU) and 3,4-dichloroaniline (DCA) were conducted in a farm soil and in stream sediments in coastal Queensland, Australia. RESULTS: During a 38 week period after a 1.6 kg ha^-1 diuron application, 70-100% of detected compounds were within 0-15 cm of the farm soil, and 3-10% reached the 30-45 cm depth. First-order t1/2 degradation averaged 49 ± 0.9 days for the 0-15, 0-30 and 0-45 cm soil depths. Farm runoff was collected in the first 13-50 min of episodes lasting 55-90 min. Average concentrations of diuron, DCPU and DCPMU in runoff were 93, 30 and 83-825 µg L^-1 respectively. Their total loading in all runoff was >0.6% of applied diuron. Diuron and DCPMU concentrations in stream sediments were between 3-22 and 4-31 µg kg^-1 soil respectively. The DCPMU/diuron sediment ratio was >1. CONCLUSION: Retention of diuron and its metabolites in farm topsoil indicated their negligible potential for groundwater contamination. Minimal amounts of diuron and DCMPU escaped in farm runoff. This may entail a significant loading into the wider environment at annual amounts of application. The concentrations and ratio of diuron and DCPMU in stream sediments indicated that they had prolonged residence times and potential for accumulation in sediments. The higher ecotoxicity of DCPMU compared with diuron and the combined presence of both compounds in stream sediments suggest that together they would have a greater impact on sensitive aquatic species than as currently apportioned by assessments that are based upon diuron alone.
Resumo:
The present study set out to test the hypothesis through field and simulation studies that the incorporation of short-term summer legumes, particularly annual legume lablab (Lablab purpureus cv. Highworth), in a fallow-wheat cropping system will improve the overall economic and environmental benefits in south-west Queensland. Replicated, large plot experiments were established at five commercial properties by using their machineries, and two smaller plot experiments were established at two intensively researched sites (Roma and St George). A detailed study on various other biennial and perennial summer forage legumes in rotation with wheat and influenced by phosphorus (P) supply (10 and 40 kg P/ha) was also carried out at the two research sites. The other legumes were lucerne (Medicago sativa), butterfly pea (Clitoria ternatea) and burgundy bean (Macroptilium bracteatum). After legumes, spring wheat (Triticum aestivum) was sown into the legume stubble. The annual lablab produced the highest forage yield, whereas germination, establishment and production of other biennial and perennial legumes were poor, particularly in the red soil at St George. At the commercial sites, only lablab-wheat rotations were experimented, with an increased supply of P in subsurface soil (20 kg P/ha). The lablab grown at the commercial sites yielded between 3 and 6 t/ha forage yield over 2-3 month periods, whereas the following wheat crop with no applied fertiliser yielded between 0.5 to 2.5 t/ha. The wheat following lablab yielded 30% less, on average, than the wheat in a fallow plot, and the profitability of wheat following lablab was slightly higher than that of the wheat following fallow because of greater costs associated with fallow management. The profitability of the lablab-wheat phase was determined after accounting for the input costs and additional costs associated with the management of fallow and in-crop herbicide applications for a fallow-wheat system. The economic and environmental benefits of forage lablab and wheat cropping were also assessed through simulations over a long-term climatic pattern by using economic (PreCAPS) and biophysical (Agricultural Production Systems Simulation, APSIM) decision support models. Analysis of the long-term rainfall pattern (70% in summer and 30% in winter) and simulation studies indicated that ~50% time a wheat crop would not be planted or would fail to produce a profitable crop (grain yield less than 1 t/ha) because of less and unreliable rainfall in winter. Whereas forage lablab in summer would produce a profitable crop, with a forage yield of more than 3 t/ha, ~90% times. Only 14 wheat crops (of 26 growing seasons, i.e. 54%) were profitable, compared with 22 forage lablab (of 25 seasons, i.e. 90%). An opportunistic double-cropping of lablab in summer and wheat in winter is also viable and profitable in 50% of the years. Simulation studies also indicated that an opportunistic lablab-wheat cropping can reduce the potential runoff+drainage by more than 40% in the Roma region, leading to improved economic and environmental benefits.
Resumo:
Fruit drop in lychee can cause major yield losses in Australia, the severity varying with cultivar and season. Research in China, South Africa and Israel has demonstrated the potential for synthetic auxins used as foliar sprays to reduce fruit drop in lychee. Trials were initiated in Australia to test the efficacy of the synthetic auxin, 3-5-6 Trichloro-2-phridyl-oxyacetic acid (3-5-6 TPA) at 50 ppm on the cultivars Tai So, Fay Zee Sui and Kwai Mai Pink. Results indicate that in most cases the TPA reduced natural fruit drop however the size of the fruit at the time of application affects the response and the ideal application time varies with cultivar; approximately 13 mm fruit length in 'Kwai Mai Pink', 20 mm in 'Fay Zee Sui' and 27 mm in 'Tai So'. If applied too early in 'Tai So', it caused an increase in fruit drop. The TPA was most effective when natural fruit drop was high, reducing fruit drop from 74.7 to 34.9% in 'Kwai Mai Pink' and least effective when natural fruit drop was low. An increase in the percentage of fruit with poorly developed (chicken tongue) seed and slightly larger fruit size was also observed in treated trees.
Resumo:
Suitable for gaining some insights into important questions about the management of turf in dry times. Improve your product quality and avoid unnecessary losses. Can varieties help? How important are soils in conserving moisture and how do I measure my soil's condition? How can I make the best use of available water? Can water retaining amendments assist in establishing turf? Is recycled water a good option? Contains research results from turfgrass trials conducted by Queensland Government scientists for Queensland conditions.
Resumo:
Fruit drop can cause major yield losses in Australian lychee orchards, the severity varying with cultivar and season. Research in China, South Africa and Israel has demonstrated the potential for synthetic auxins used as foliar sprays to reduce fruit drop in lychee. Trials tested the efficacy of the synthetic auxin 3-5-6 trichloro-2-phridyl-oxyacetic acid (TPA) applied as a foliar spray at 50 ppm on fruit drop and fruit size on the cultivars ‘Fay Zee Siu’, ‘Kaimana’, ‘Kwai Mai Pink’, ‘Souey Tung’ and ‘Tai So’. TPA reduced fruit drop when applied to fruit greater than 12 mm in length but increased fruit drop when fruit were smaller. Fruit size at the time of application had less effect on the response than the level of natural fruit drop. When natural fruit drop was high, TPA significantly reduced it; by up to 18.7 in ‘Fay Zee Siu’, 37.1 in ‘Kaimana’, 39.8 in ‘Kwai Mai Pink’, 15.1 in ‘Souey Tung’ and 7.7 in ‘Tai So’. TPA was less effective when natural fruit drop was low. TPA increased the number of large fruit and frequently increased the number of small fruit at harvest. The small fruit were associated with an increase in the retention of fruit with poorly developed (chicken tongue) seed. Average fruit size was generally larger (up to 12.7 in ‘Souey Tung’ and 22 in ‘Tai So’) with TPA applications.
Resumo:
General Index Vol 13 Parts 1-6, pages 1-81
Resumo:
Castration of cattle using rubber rings is becoming increasingly popular due to the perceived ease of the procedure and greater operator safety when compared with surgical castration. Few comparative studies have investigated the effects of different castration methods and calf age on welfare outcomes, particularly in a tropical environment. Thirty Belmont Red (a tropically adapted breed), 3-month-old (liveweight 71–119 kg) and 30, 6-month-old (liveweight 141–189 kg) calves were assigned to a two age × three castration (surgical, ring and sham) treatment factorial study (Surg3, Surg6, Ring3, Ring6, Sham3 and Sham6, n = 10 for each treatment group). Welfare outcomes were assessed post-castration using: behaviour for 2 weeks; blood parameters (cortisol and haptoglobin concentrations) to 4 weeks; wound healing to 5 weeks; and liveweights to 6 weeks. More Surg calves struggled during castration compared with Sham and Ring (P < 0.05, 90 ± 7% vs. 20 ± 9% and 24 ± 10%) and performed more struggles (1.9 ± 0.2, 1.1 ± 0.3 and 1.1 ± 0.3 for Surg, Sham and Ring, respectively), suggesting that surgical castration caused most pain during performance of the procedure. A significant (P < 0.05) time × castration method × age interaction for plasma cortisol revealed that concentrations decreased most rapidly in Sham; the Ring6 calves failed to show reduced cortisol concentrations at 2 h post-castration, unlike other treatment groups. By 7 h post-castration, all treatment groups had similar concentrations. A significant (P < 0.01) interaction between time and castration method showed that haptoglobin concentrations increased slightly to 0.89 and 0.84 mg/mL for Surg and Ring, respectively over the first 3 days post-castration. Concentrations for Surg then decreased to levels similar to Sham by day 21 and, although concentrations for Ring decreased on day 7 to 0.76 mg/mL, they increased significantly on day 14 to 0.97 mg/mL before reducing to concentrations similar to the other groups (0.66 mg/mL) by day 21. Significantly (P < 0.05) more of the wounds of the 3-month compared with the 6-month calves scored as ‘healed’ at day 7 (74% vs. 39%), while more (P = 0.062) of the Surg than Ring scored as ‘healed’ at day 21 (60% vs. 29%). At day 14 there were significantly (P < 0.05) fewer healed wounds in Ring6 compared with other treatment groups (13% vs. 40–60%). Liveweight gain was significantly (P < 0.05) greater in 3-month (0.53 kg/day) than in 6-month calves (0.44 kg/day) and in Sham calves (P < 0.001, 0.54 kg/day), than in Ring (0.44 kg/day) and Surg (0.48 kg/day) calves. Overall, welfare outcomes were slightly better for Surg than Ring calves due to reduced inflammation and faster wound healing, with little difference between age groups.
Resumo:
Castration of cattle using rubber rings is becoming increasingly popular due to the perceived ease of the procedure and greater operator safety when compared with surgical castration. Few comparative studies have investigated the effects of different castration methods and calf age on welfare outcomes, particularly in a tropical environment. Thirty Belmont Red (a tropically adapted breed), 3-month-old (liveweight 71–119 kg) and 30, 6-month-old (liveweight 141–189 kg) calves were assigned to a two age × three castration (surgical, ring and sham) treatment factorial study (Surg3, Surg6, Ring3, Ring6, Sham3 and Sham6, n = 10 for each treatment group). Welfare outcomes were assessed post-castration using: behaviour for 2 weeks; blood parameters (cortisol and haptoglobin concentrations) to 4 weeks; wound healing to 5 weeks; and liveweights to 6 weeks. More Surg calves struggled during castration compared with Sham and Ring (P < 0.05, 90 ± 7% vs. 20 ± 9% and 24 ± 10%) and performed more struggles (1.9 ± 0.2, 1.1 ± 0.3 and 1.1 ± 0.3 for Surg, Sham and Ring, respectively), suggesting that surgical castration caused most pain during performance of the procedure. A significant (P < 0.05) time × castration method × age interaction for plasma cortisol revealed that concentrations decreased most rapidly in Sham; the Ring6 calves failed to show reduced cortisol concentrations at 2 h post-castration, unlike other treatment groups. By 7 h post-castration, all treatment groups had similar concentrations. A significant (P < 0.01) interaction between time and castration method showed that haptoglobin concentrations increased slightly to 0.89 and 0.84 mg/mL for Surg and Ring, respectively over the first 3 days post-castration. Concentrations for Surg then decreased to levels similar to Sham by day 21 and, although concentrations for Ring decreased on day 7 to 0.76 mg/mL, they increased significantly on day 14 to 0.97 mg/mL before reducing to concentrations similar to the other groups (0.66 mg/mL) by day 21. Significantly (P < 0.05) more of the wounds of the 3-month compared with the 6-month calves scored as ‘healed’ at day 7 (74% vs. 39%), while more (P = 0.062) of the Surg than Ring scored as ‘healed’ at day 21 (60% vs. 29%). At day 14 there were significantly (P < 0.05) fewer healed wounds in Ring6 compared with other treatment groups (13% vs. 40–60%). Liveweight gain was significantly (P < 0.05) greater in 3-month (0.53 kg/day) than in 6-month calves (0.44 kg/day) and in Sham calves (P < 0.001, 0.54 kg/day), than in Ring (0.44 kg/day) and Surg (0.48 kg/day) calves. Overall, welfare outcomes were slightly better for Surg than Ring calves due to reduced inflammation and faster wound healing, with little difference between age groups.