3 resultados para 756

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The establishment of experimental populations of scarab larvae using eggs and early instar larvae has proven to be difficult for many researchers. Despite this, little work has been published examining ways to optimise establishment under artificial conditions. In this experiment, we examined the effect of shade and irrigation on the establishment of Heteronyx piceus Blanchard larvae introduced into pots as eggs and first-, second- and third-instar larvae to optimise artificial infestation techniques. The most important factor affecting larval establishment was the life stage introduced. Establishment of eggs and first instars was very low, with only 21% of eggs and 11% of first-instar larvae establishing. In contrast, 82% of second-instar larvae and 84% of third-instar larvae established successfully. The addition of shade marginally improved overall survival from 45% in the unshaded pots to 53% in the shaded pots. However, most of this increase was in the eggs and first instars. Irrigation did not improve survival. These results suggest that when introducing scarab larvae to field or pot experiments, second- or thirdinstar larvae should be used to maximise establishment. The provision of shade and supplementary irrigation is optional.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Aims: The evolution of resistance to herbicides is a substantial problem in contemporary agriculture. Solutions to this problem generally consist of the use of practices to control the resistant population once it evolves, and/or to institute preventative measures before populations become resistant. Herbicide resistance evolves in populations over years or decades, so predicting the effectiveness of preventative strategies in particular relies on computational modelling approaches. While models of herbicide resistance already exist, none deals with the complex regional variability in the northern Australian sub-tropical grains farming region. For this reason, a new computer model was developed. Methods: The model consists of an age- and stage-structured population model of weeds, with an existing crop model used to simulate plant growth and competition, and extensions to the crop model added to simulate seed bank ecology and population genetics factors. Using awnless barnyard grass (Echinochloa colona) as a test case, the model was used to investigate the likely rate of evolution under conditions expected to produce high selection pressure. Key Results: Simulating continuous summer fallows with glyphosate used as the only means of weed control resulted in predicted resistant weed populations after approx. 15 years. Validation of the model against the paddock history for the first real-world glyphosate-resistant awnless barnyard grass population shows that the model predicted resistance evolution to within a few years of the real situation. Conclusions: This validation work shows that empirical validation of herbicide resistance models is problematic. However, the model simulates the complexities of sub-tropical grains farming in Australia well, and can be used to investigate, generate and improve glyphosate resistance prevention strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evaluation of a series of spotted gum (Corymbia citirodora) progeny trials, established in the subtropical region of Queensland, Australia, was undertaken to provide information for the development of advanced-generation breeding populations suitable for pulp production. Measurements of growth at two ages were combined with assessments of wood density and pulp yield from a selected sample of provenances to provide comparisons between provenances, to generate genetic parameter estimates and to predict genetic gain potential. Although growth at this age was moderate relative to other eucalypts, the near-infrared predictions of average wood density of 756 kg m(-3) and pulp yield of 55% indicate the species has considerable potential as a pulpwood crop. A pulp productivity breeding objective was used to identify production populations using a range of selection trait weightings to determine potential genetic gain for pulp productivity. Genetic parameters indicated (1) levels of genetic control were moderate for all traits and higher for wood property traits, (2) genetic improvements could be achieved by selection among and within provenances with greater levels of improvement available from selection within populations, (3) genotype by environment interactions were negligible, (4) genetic correlations between traits were favourable, and (5) selection of volume production alone would maximise improvements in pulp productivity.