9 resultados para 7140-241
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Sleepy cod (Oxyeleotris lineolatus Steindachner) is a tropical species of eleotrid native to northern Australia. A related species, sand or marbled goby, is the highest priced freshwater fish in Asia, and a market for a similar fish exists in expatriate Chinese communities. Sleepy cod breed when minimum temperatures reach 24 °C for more than 3 days. During the breeding season the genital papilla is broad and flattened in females compared to the triangular papilla of males and juveniles. Spawning pairs were usually of approximately equal size. Females could spawn up to 10 times during one breeding season. Wet weather increased the frequency of spawning. Eggs were usually laid hanging from the underside of a surface. Most spawning occurred between 05:00 and 10:00 h. Females attended egg masses immediately after spawning, after which males cared for eggs until hatching, 3–5 days later. Agitation of the egg mass was essential for development. The mean number of eggs per spawning was 43 130. Larvae commenced feeding 2–5 days after hatching, on plankton from 100 to 250 m in size. A spawning trap used to collect egg masses is described. The breeding biology of sleepy cod is considered to be an adaptation to the monsoonal tropics.
Resumo:
The parasites of some decapod crustaceans are known to cause sterilisation of their hosts, and can thus have an important impact on the population dynamics of infested species. Blue swimmer crabs (Portunus pelagicus) collected in three areas around Moreton Bay, Australia were examined for the presence of epizoic barnacles in their branchial chambers and on their carapace. Of the 952 crabs inspected 92% were infested with Octolasmis spp. The mean number of barnacles (predominantly Octolasmis warwickii) per carapace and gill chamber (mainly O. angulata) were 2.35 and 71.1, respectively. Barnacle infestation of gills was found to differ significantly by area, season and sex with the deeper offshore areas exhibiting the highest number of barnacles. The distribution within the hosts showed barnacles were more likely to be distributed in areas closer to the inhalant aperture. Highest abundances were found on the proximal surface of the hypobranchial side of gills 3, 4 and 5. Host moult stage and parasitism by Sacculina granifera were also found to affect the abundance of epizoic barnacles in some areas.
Resumo:
We have characterised six Australian Cucumber mosaic virus (CMV) strains belonging to different subgroups, determined by the sequence of their complete RNA 3 and by their host range and the symptoms they cause on species in the Solanaceae, Cucurbitaceae and on sweet corn. These data allowed classification of strains into the known three CMV subgroups and identification of plant species able to differentiate the Australian strains by symptoms and host range. Western Australian strains 237 and Twa and Queensland strains 207 and 242 are closely related members of CMV subgroup IA, which cause similar severe symptoms on Nicotiana species. Strains 207 and 237 (subgroup IA) were the only strains tested which systemically infected sweet corn. Strain 243 caused the most severe symptoms of all strains on Nicotiana species, tomato and capsicum and appears to be the first confirmed subgroup IB strain reported in Australia. Based on pair-wise distance analysis and phylogeny of RNA 3, as well as mild disease symptoms on Nicotiana species, CMV 241 was assigned to subgroup II, as the previously described Q-CMV and LY-CMV.
Resumo:
Displacement of the fungus Fusarium pseudograminearum from stubble by antagonists is a potential means of biocontrol of crown rot in cereals. The role of carbon and nitrogen nutrition in interactions between the pathogen and the antagonists Fusarium equiseti, Fusarium nygamai, Trichoderma harzianum and the non-antagonistic straw fungus Alternaria infectoria was investigated. Sole carbon source utilization patterns on Biolog plates were similar among the three Fusarium species, suggesting a possible role for competition. However, carbon niche overlap was unlikely to be important in antagonism by T. harzianum. Straw medium supplemented with sugars generally reduced the inhibitory effect of antagonists on growth of F. pseudograminearum in dual culture, indicating that availability of simple carbon sources does not limit antagonism. Adding nitrogen as urea, nitrate or ammonium to straw medium had little effect on antagonism by F. equiseti and F. nygamai, but ammonium addition removed the inhibitory effect of T. harzianum on growth of F. pseudograminearum. Displacement of F. pseudograminearum from straw by all fungi in a Petri dish assay was greater when urea or nitrate was used as a nitrogen source than with ammonium. All forms of nitrogen significantly increased displacement of F. pseudograminearum from straw under simulated field conditions when straws were either inoculated with T. harzianum or exposed to resident soil microbes. However, in 2 out of 3 experiments urea and nitrate were more effective than ammonium. The results suggest that availability of nitrogen, but not carbon, is limiting the activities of antagonists of F. pseudograminearum in straw, and the way nitrogen is applied can influence the rate of displacement and mortality of the pathogen in host residues.
Resumo:
Inter-specific Corymbia hybrids are of increasing interest to plantation forestry, yet there is little knowledge of the most suitable controlled pollination methods for this genus. Inter-specific crosses were made between C. torelliana [CT(maternal parent)] and C. citriodora subsp. variegata (CCV), C. henryi (CH) and C. citriodora subsp. citriodora (CCC) using conventional pollination, one-stop pollination (OSP) and artificially-induced protogyny on yellow buds (AIP Y) pollination methods. Additional treatments included AIP on green buds (AIP G) and the use of exclusion bags for the OSP and AIP methods. Inter-specific hybrids (CT x CCV, CT x CH and CT x CCC) were successfully created using all three pollination methods. The AIP Y treatment provided the highest seed yields and achieved time savings of >41% over the conventional and OSP methods, resulting in up to five-fold increases in operator productivity. However, the AIP Y treatment also had the highest C. torelliana contamination levels (9.3–13.2%). The use of exclusion bags with the AIP method had minimal effect on contamination rates, indicating a high proportion of selfpollen contamination. Contamination rates varied between maternal parents, suggesting variation in selfcompatibility for C. torelliana individuals. AIP using semi-ripe green buds was not effective at reducing selfing and had low operator productivity. The AIP method is suitable for use in a large-scale hybrid breeding program for C. torelliana. When self-pollination effects are managed, it could greatly reduce the costs associated with the production of seed of elite family crosses for commercial forestry deployment.
Resumo:
Lead (Pb) poisoning of cattle has been relatively common in Australia and sump oil has been identified as an important cause of Pb toxicity for cattle because they seem to have a tendency to drink it. Lead-free petrol has been available in Australia since 1975, so the aim of this study was to assess the current risk to cattle from drinking used automotive oils. Sump or gear box oil was collected from 56 vehicles being serviced. The low levels of Pb found suggest that the removal of leaded petrol from the Australian market as a public health measure has benefited cattle by eliminating the risk of acute poisoning from used engine oil.
Resumo:
The root-lesion nematode, Pratylenchus thornei, can reduce wheat yields by >50%. Although this nematode has a broad host range, crop rotation can be an effective tool for its management if the host status of crops and cultivars is known. The summer crops grown in the northern grain region of Australia are poorly characterised for their resistance to P. thornei and their role in crop sequencing to improve wheat yields. In a 4-year field experiment, we prepared plots with high or low populations of P. thornei by growing susceptible wheat or partially resistant canaryseed (Phalaris canariensis); after an 11-month, weed-free fallow, several cultivars of eight summer crops were grown. Following another 15-month, weed-free fallow, P. thornei-intolerant wheat cv. Strzelecki was grown. Populations of P. thornei were determined to 150 cm soil depth throughout the experiment. When two partially resistant crops were grown in succession, e.g. canaryseed followed by panicum (Setaria italica), P. thornei populations were <739/kg soil and subsequent wheat yields were 3245 kg/ha. In contrast, after two susceptible crops, e.g. wheat followed by soybean, P. thornei populations were 10 850/kg soil and subsequent wheat yields were just 1383 kg/ha. Regression analysis showed a linear, negative response of wheat biomass and grain yield with increasing P. thornei populations and a predicted loss of 77% for biomass and 62% for grain yield. The best predictor of wheat yield loss was P. thornei populations at 0-90 cm soil depth. Crop rotation can be used to reduce P. thornei populations and increase wheat yield, with greatest gains being made following two partially resistant crops grown sequentially.
Resumo:
Small hive beetles (SHBs) are a global pest of European honeybee colonies. In the laboratory, the survival of adult SHBs was evaluated in relation to relative humidity (RH = 56, 64, 73, 82 and 96 %) and treatment with diatomaceous earth (DE) across 4 days. Low RH reduced survival. The application of DE reduced survival in addition to RH. Adults treated with corn flour (control) showed no difference in survival from untreated beetles. Scanning electron microscopy images showed no scarification of adult beetle cuticle after exposure to DE; therefore, water loss is likely facilitated through non-abrasive means such as the adsorption of cuticular lipids. The data agree with the hypothesis that DE causes mortality through water loss from treated insects. Egress, ingress, mortality and the egg-laying behaviours of beetles were observed in relation to a popular in-hive trench trap with and without the addition of DE. Traps filled with DE resulted in 100 % mortality of beetles compared with 8.6 % mortality when no DE was present. A simple method for visually determining beetle sex was used and documented.
Resumo:
Spinifex grasses are the dominant vegetative component in Australian grassland habitats, covering approximately 26% of the Australian landmass. Our ongoing work explores the utility of both the cellulosic and resinous components of this abundant biomass for modern applications and a potential economy for our Aboriginal collaborators. This study is focused on the optimisation of a resin extraction process using solvent, and the subsequent evaluation, via a field trial, of the potential use and efficacy of the resin as an anti-termite coating material. Termiticidal performance was evaluated by re-dissolving the extracted resin in acetone and coating on pine timber blocks. The resin-coated and control blocks were then exposed to a colony of Mastotermes darwiniensis’ (Froggatt) termites, which are the most primitive alive and destructive species in subterranean area, at a trial site in northeast Australia, for six months. The results clearly showed that spinifex resin effectively protected the timber from termite attack, while the uncoated control samples were extensively damaged. By demonstrating an enhanced termite resistance, we here report that plant resins that are produced by arid/semi-arid grasses could be potentially used as treatments to prevent termite attack.