3 resultados para 710701 Electricity, gas and water services and utilities
em eResearch Archive - Queensland Department of Agriculture
Resumo:
NITROUS OXIDE (N2O) IS a potent greenhouse gas and the predominant ozone-depleting substance in the atmosphere. Agricultural nitrogenous fertiliser use is the major source of human-induced N2O emissions. A field experiment was conducted at Bundaberg from October 2012 to September 2014 to examine the impacts of legume crop (soybean) rotation as an alternative nitrogen (N) source on N2O emissions during the fallow period and to investigate low-emission soybean residue management practices. An automatic monitoring system and manual gas sampling chambers were used to measure greenhouse gas emissions from soil. Soybean cropping during the fallow period reduced N2O emissions compared to the bare fallow. Based on the N content in the soybean crop residues, the fertiliser N application rate was reduced by about 120 kg N/ha for the subsequent sugarcane crop. Consequently, emissions of N2O during the sugarcane cropping season were significantly lower from the soybean cropped soil than those from the conventionally fertilised (145 kg N/ha) soil following bare fallow. However, tillage that incorporated the soybean crop residues into soil promoted N2O emissions in the first two months. Spraying a nitrification inhibitor (DMPP) onto the soybean crop residues before tillage effectively prevented the N2O emission spikes. Compared to conventional tillage, practising no-till with or without growing a nitrogen catch crop during the time after soybean harvest and before cane planting also reduced N2O emissions substantially. These results demonstrated that soybean rotation during the fallow period followed with N conservation management practices could offer a promising N2O mitigation strategy in sugarcane farming. Further investigation is required to provide guidance on N and water management following soybean fallow to maintain sugar productivity.
Resumo:
Reverse osmosis (RO) brine produced at a full-scale coal seam gas (CSG) water treatment facility was characterized with spectroscopic and other analytical techniques. A number of potential scalants including silica, calcium, magnesium, sulphates and carbonates, all of which were present in dissolved and non-dissolved forms, were characterized. The presence of spherical particles with a size range of 10–1000 nm and aggregates of 1–10 microns was confirmed by transmission electron microscopy (TEM). Those particulates contained the following metals in decreasing order: K, Si, Sr, Ca, B, Ba, Mg, P, and S. Characterization showed that nearly one-third of the total silicon in the brine was present in the particulates. Further, analysis of the RO brine suggested supersaturation and precipitation of metal carbonates and sulphates during the RO process should take place and could be responsible for subsequently capturing silica in the solid phase. However, the precipitation of crystalline carbonates and sulphates are complex. X-ray diffraction analysis did not confirm the presence of common calcium carbonates or sulphates but instead showed the presence of a suite of complex minerals, to which amorphous silica and/or silica rich compounds could have adhered. A filtration study showed that majority of the siliceous particles were less than 220 nm in size, but could still be potentially captured using a low molecular weight ultrafiltration membrane.
Resumo:
Reverse osmosis (RO) brine produced at a full-scale coal seam gas (CSG) water treatment facility was characterized with spectroscopic and other analytical techniques. A number of potential scalants including silica, calcium, magnesium, sulphates and carbonates, all of which were present in dissolved and non-dissolved forms, were characterized. The presence of spherical particles with a size range of 10-1000nm and aggregates of 1-10 microns was confirmed by transmission electron microscopy (TEM). Those particulates contained the following metals in decreasing order: K, Si, Sr, Ca, B, Ba, Mg, P, and S. Characterization showed that nearly one-third of the total silicon in the brine was present in the particulates. Further, analysis of the RO brine suggested supersaturation and precipitation of metal carbonates and sulphates during the RO process should take place and could be responsible for subsequently capturing silica in the solid phase. However, the precipitation of crystalline carbonates and sulphates are complex. X-ray diffraction analysis did not confirm the presence of common calcium carbonates or sulphates but instead showed the presence of a suite of complex minerals, to which amorphous silica and/or silica rich compounds could have adhered. A filtration study showed that majority of the siliceous particles were less than 220nm in size, but could still be potentially captured using a low molecular weight ultrafiltration membrane. © 2015 Elsevier Ltd.