25 resultados para 60 degrees dislocation lines
em eResearch Archive - Queensland Department of Agriculture
Resumo:
An understanding of processes regulating wheat floret and grain number at higher temperatures is required to better exploit genetic variation. In this study we tested the hypothesis that at higher temperatures, a reduction in floret fertility is associated with a decrease in soluble sugars and this response is exacerbated in genotypes low in water soluble carbohydrates (WSC). Four recombinant inbred lines contrasting for stem WSC were grown at 20/10 degrees C and 11 h photoperiod until terminal spikelet, and then continued in a factorial combination of 20/10 degrees C or 28/14 degrees C with 11 h or 16 h photoperiod until anthesis. Across environments, High WSC lines had more grains per spike associated with more florets per spike. The number of fertile florets was associated with spike biomass at booting and, by extension, with glucose amount, both higher in High WSC lines. At booting, High WSC lines had higher fixed C-13 and higher levels of expression of genes involved in photosynthesis and sucrose transport and lower in sucrose degradation compared with Low WSC lines. At higher temperature, the intrinsic rate of floret development rate before booting was slower in High WSC lines. Grain set declined with the intrinsic rate of floret development before booting, with an advantage for High WSC lines at 28/14 degrees C and 16 h. Genotypic and environmental action on floret fertility and grain set was summarised in a model.
Resumo:
Degree of dominance of phosphine resistance was investigated in adults of Rhyzopertha dominica F and Sitophilus oryzae L. Efficacy of the grain fumigant phosphine depends on both concentration and exposure period, which raises the possibility that dominance levels vary with exposure period. New and published data were used to test this possibility in adults of R dominica and S oryzae fumigated for periods of up to 144 h. The concentrations required for control of homozygous resistant and susceptible strains and their F1 hybrids decreased with increasing exposure period. For both species the response lines for the homozygous resistant and susceptible strains and their F1 hybrids were parallel. Therefore, neither dominance level nor resistance factor was affected by exposure period. Resistance was incompletely recessive and the level of dominance, calculated at 50% mortality level, was -0.59 for R dominica and -0.65 for S oryzae. The resistant R dominica strain was 30.9 times more resistant than the susceptible strain, compared with 8.9 times for the resistant S oryzae strain. The results suggest that developing discriminating doses for detecting heterozygote adults of either species will be difficult.
Resumo:
Objective To attenuate two strains of Eimeria tenella by selecting for precocious development and evaluate the strains in characterisation trials and by field evaluation, to choose one precocious line for incorporation into an Australian live coccidiosis vaccine for poultry. Design Two strains from non-commercial flocks were passaged through chickens while selecting for precocious development. Each strain was characterised for drug sensitivity, pathogenicity, protection against homologous and heterologous challenge, and oocyst output in replicated experiments in which the experimental unit was a cage of three birds. Oocyst output and/or body weight gain data collected over a 10 to 12 day period following final inoculation were measured. Feed conversion ratios were also calculated where possible. Results Fifteen passages resulted in prepatent periods reduced by 24 h for the Redlands strain (from 144 h to 120 h)and 23 h for the Darryl strain (from 139 h to 116 h). Characterisation trials demonstrated that each precocious line was significantly less pathogenic than its parent strain and each effectively induced immunity that protected chickens against challenge with both the parent strain and other virulent field strains. Both lines had oocyst outputs that, although significantly reduced relative to the parent strains, remained sufficiently high for commercial vaccine production, and both showed susceptibility to coccidiostats. Conclusion Two attenuated lines have been produced that exhibit the appropriate characteristics for use in an Australian live coccidiosis vaccine.
Resumo:
Wheat is one of the major food crops in the world. It is Australia's largest crop and most important agricultural commodity. In Australia the crop is grown under rainfed conditions with inherently important regional environmental differences; wheat growing areas are characterized by winter dominant rainfall in southern and western Australia and summer rainfall in northern Australia. Maximizing yield potential across these diverse regions is dependent upon managing, either genetically or agronomically, those factors in the environment that limit yield. The potential of synthetic backcross lines (SBLs) to increase yield in the diverse agroecological zones of Australia was investigated. Significant yield advantages were found for many of the SBLs across diverse environments. Depending on the environment, the yield of the SBLs ranged from 8% to 30% higher than the best local check in Australia. Apart from adaptation to semiarid water stressed conditions, some SBLs were also found to be significantly higher yielding under more optimal (irrigated) conditions. The four testing environments were classified into two groups, with the northern and southern environments being in separate groups. An elite group of SBLs was identified that exhibited broad adaptation across all diverse Australian environments included in this study. Other SBLs showed specific adaptation to either northern or southern Australia. This study showed that SBLs are likely to provide breeders with the opportunity to significantly improve wheat yield beyond what was previously possible in a number of diverse production environments.
Resumo:
Consumption of freshly-cut horticultural products has increased in the last few years. The principal restraint to using freshly-cut carambola is its susceptibility to tissue-browning, due to polyphenol oxidase-mediated oxidation of phenolic compounds present in the tissue. The current study investigated the susceptibility to browning of star fruit slices (Averrhoa carambola L.) of seven genotypes (Hart, Golden Star, Taen-ma, Nota-10, Malasia, Arkin, and Fwang Tung). Cultivar susceptibility to browning as measured by luminosity (L*) varied significantly among genotypes. Without catechol 0.05 M, little changes occurred on cut surface of any cultivars during 6 hour at 25 degrees C, 67% RH. Addition of catechol led to rapid browning, which was more intense in cvs. Taen-ma, Fwang Tung, and Golden Star, with reduction in L* value of 28.60%, 27.68%, and 23.29%, respectively. Browning was more intense in the center of the slices, particularly when treated with catechol, indicating highest polyphenol oxidase (PPO) concentration. Epidermal browning, even in absence of catechol, is a limitation to visual acceptability and indicates a necessity for its control during carambola processing. Care must be given to appropriate selection of cultivars for fresh-cut processing, since cultivar varied in browning susceptibility in the presence of catechol.
Resumo:
Thirty-seven surface (0-0.10 or 0-0.20 m) soils covering a wide range of soil types (16 Vertosols, 6 Ferrosols, 6 Dermosols, 4 Hydrosols, 2 Kandosols, 1 Sodosol, 1 Rudosol, and 1 Chromosol) were exhaustively cropped in 2 glasshouse experiments. The test species were Panicum maximum cv. Green Panic in Experiment A and Avena sativa cv. Barcoo in Experiment B. Successive forage harvests were taken until the plants could no longer grow in most soils because of severe potassium (K) deficiency. Soil samples were taken prior to cropping and after the final harvest in both experiments, and also after the initial harvest in Experiment B. Samples were analysed for solution K, exchangeable K (Exch K), tetraphenyl borate extractable K for extraction periods of 15 min (TBK15) and 60 min (TBK60), and boiling nitric acid extractable K (Nitric K). Inter-correlations between the initial levels of the various soil K parameters indicated that the following pools were in sequential equilibrium: solution K, Exch K, fast release fixed K [estimated as (TBK15-Exch K)], and slow release fixed K [estimated as (TBK60-TBK15)]. Structural K [estimated as (Nitric K-TBK60)] was not correlated with any of the other pools. However, following exhaustive drawdown of soil K by cropping, structural K became correlated with solution K, suggesting dissolution of K minerals when solution K was low. The change in the various K pools following cropping was correlated with K uptake at Harvest 1 ( Experiment B only) and cumulative K uptake ( both experiments). The change in Exch K for 30 soils was linearly related to cumulative K uptake (r = 0.98), although on average, K uptake was 35% higher than the change in Exch K. For the remaining 7 soils, K uptake considerably exceeded the change in Exch K. However, the changes in TBK15 and TBK60 were both highly linearly correlated with K uptake across all soils (r = 0.95 and 0.98, respectively). The slopes of the regression lines were not significantly different from unity, and the y-axis intercepts were very small. These results indicate that the plant is removing K from the TBK pool. Although the change in Exch K did not consistently equate with K uptake across all soils, initial Exch K was highly correlated with K uptake (r = 0.99) if one Vertosol was omitted. Exchangeable K is therefore a satisfactory diagnostic indicator of soil K status for the current crop. However, the change in Exch K following K uptake is soil-dependent, and many soils with large amounts of TBK relative to Exch K were able to buffer changes in Exch K. These soils tended to be Vertosols occurring on floodplains. In contrast, 5 soils (a Dermosol, a Rudosol, a Kandosol, and 2 Hydrosols) with large amounts of TBK did not buffer decreases in Exch K caused by K uptake, indicating that the TBK pool in these soils was unavailable to plants under the conditions of these experiments. It is likely that K fertiliser recommendations will need to take account of whether the soil has TBK reserves, and the availability of these reserves, when deciding rates required to raise exchangeable K status to adequate levels.
Resumo:
Sorghum is an important source of food, feed, and biofuel, especially in the semi-arid tropics because this cereal is well adapted to harsh, drought-prone environments. Post-flowering drought adaptation in sorghum is associated with the stay-green phenotype. Alleles that contribute to this complex trait have been mapped to four major QTL, Stg1-Stg4, using a population derived from BTx642 and RTx7000. Near-isogenic RTx7000 lines containing BTx642 DNA spanning one or more of the four stay-green QTL were constructed. The size and location of BTx642 DNA regions in each RTx7000 NIL were analysed using 62 DNA markers spanning the four stay-green QTL. RTx7000 NILs were identified that contained BTx642 DNA completely or partially spanning Stg1, Stg2, Stg3, or Stg4. NILs were also identified that contained sub-portions of each QTL and various combinations of the four major stay-green QTL. Physiological analysis of four RTx7000 NILs containing only Stg1, Stg2, Stg3, or Stg4 showed that BTx642 alleles in each of these loci could contribute to the stay-green phenotype. RTx7000 NILs containing BTx642 DNA corresponding to Stg2 retained more green leaf area at maturity under terminal drought conditions than RTx7000 or the other RTx7000 NILs. Under post-anthesis water deficit, a trend for delayed onset of leaf senescence compared with RTx7000 was also exhibited by the Stg2, Stg3, and Stg4 NILs, while significantly lower rates of leaf senescence in relation to RTx7000 were displayed by all of the Stg NILs to varying degrees, but particularly by the Stg2 NIL. Greener leaves at anthesis relative to RTx7000, indicated by higher SPAD values, were exhibited by the Stg1 and Stg4 NILs. The RTx7000 NILs created in this study provide the starting point for in-depth analysis of stay-green physiology, interaction among stay-green QTL and map-based cloning of the genes that underlie this trait.
Resumo:
A restricted maximum likelihood analysis applied to an animal model showed no significant differences (P > 0.05) in pH value of the longissimus dorsi measured at 24 h post-mortem (pH24) between high and low lines of Large White pigs selected over 4 years for post-weaning growth rate on restricted feeding. Genetic and phenotypic correlations between pH24 and production and carcass traits were estimated using all performance testing records combined with the pH24 measurements (5.05-7.02) on slaughtered animals. The estimate of heritability for pH24 was moderate (0.29 ± 0.18). Genetic correlations between pH24 and production or carcass composition traits, except for ultrasonic backfat (UBF), were not significantly different from zero. UBF had a moderate, positive genetic correlation with pH24 (0.24 ± 0.33). These estimates of genetic correlations affirmed that selection for increased growth rate on restricted feeding is likely to result in limited changes in pH24 and pork quality since the selection does not put a high emphasis on reduced fatness.
Resumo:
The objective of this study was to examine genetic changes in reproduction traits in sows (total number born (TNB), number born alive (NBA), average piglet birth weight (ABW) and number of piglets weaned (NW), body weight prior to mating (MW), gestation length (GL) and daily food intake during lactation (DFI)) in lines of Large White pigs divergently selected over 4 years for high and low post-weaning growth rate on a restricted ration. Heritabilities and repeatabilities of the reproduction traits were also determined. The analyses were carried out on 913 litter records using average information-restricted maximum likelihood method applied to single trait animal models. Estimates of heritability for most traits were small, except for ABW (0·33) and MW (0·35). Estimates of repeatability were slightly higher than those of heritability for TNB, NBA and NW, but they were almost identical for ABW, MW, GL and DFI. After 4 years of selection, the high growth line sows had significantly heavier body weight prior to mating and produced significantly more piglets born alive with heavier average birth weight than the low line sows. There were, however, no statistical differences between the selected lines in TNB or NW. The lower food intake of high relative to low line sows during lactation was not significant, indicating that daily food intake differences found between grower pigs in the high and low lines (2·71 v. 2·76 kg/day, s.e.d. 0·024) on ad libitum feeding were not fully expressed in lactating sows. It is concluded that selection for growth rate on the restricted ration resulted in beneficial effects on important measures of reproductive performance of the sows.
Resumo:
In the subtropics of Australia, irrigated temperate species are the key to reliable cool season feed on dairy farms. Persistence of perennial species is a major limitation to achieving reliable production from irrigated areas and yearly sowings of annual ryegrasses have replaced them as the most productive cool season forage production system in the subtropics. This series of experiments evaluated the yield, and resistance to rust damage, of commercially available cultivars and breeders' lines of annually sown ryegrasses (Lolium multiflorum, L. rigidum, L. x boucheanum and L perenne) in pure, nitrogen-fertilised swards under irrigation in the subtropics over a 22-year period. Barberia and Aristocrat 2 were the most adapted cultivars for subtropical conditions, producing high yields (119 and 114% of mean yield, respectively) and demonstrating the least rust damage. Newer selections from New Zealand, South African, United States of America and European breeding programs are performing better under subtropical conditions than older cultivars, particularly if a component of the selection process has been conducted in that environment. Cultivars such as Passerei Plus, Crusader, Hulk, Status and Warrior are examples of this process, producing between 105 and 115% of mean yield. Yields of annual ryegrass cultivars, which have been available or still are available for sale in Australia, ranged from 14-30 t/ha DM, depending on cultivar, site and seasonal conditions. Yields were lower at the site, which had inferior soil structure and drainage. Up to 50% of yield was produced in the 3 winter months. There was a trend towards improved yields and better tolerance of crown rust from experimental lines in the subtropics, as breeders strive for wider adaptation. Around 70% of the variation in total yield of annual ryegrass and 50 and 60% of the variation in winter and spring yield, respectively, were significantly explained by cultivar, site and climatic variables in autumn, winter and spring. While level of rust damage had no effect on total or seasonal yields, it affected the amount of green leaf available in spring. Under subtropical conditions, winter, spring and overall (autumn to mid-summer) temperatures influenced the- development of rust, which along with cultivar, accounted for 46% of the variation in rust damage. Cultivars showed a range of adaptation, with some performing well only under adverse conditions, some being well adapted to all conditions and some which performed well only under favoured conditions. Cultivars with high winter yields were most suited to subtropical conditions and included Aristocrat 2 (now released as CM 108), Barberia, Warrior, Crusader, Status, Passerei Plus and Hulk. Short growing season types such as Winter Star and T Rex performed well in winter but achieved lower total production, and long season cultivars such as Flanker rarely achieved their potential because of unfavourable conditions in late summer.
Resumo:
Climate change projections for Australia predict increasing temperatures, changes to rainfall patterns, and elevated atmospheric carbon dioxide (CO2) concentrations. The aims of this study were to predict plant production responses to elevated CO2 concentrations using the SGS Pasture Model and DairyMod, and then to quantify the effects of climate change scenarios for 2030 and 2070 on predicted pasture growth, species composition, and soil moisture conditions of 5 existing pasture systems in climates ranging from cool temperate to subtropical, relative to a historical baseline. Three future climate scenarios were created for each site by adjusting historical climate data according to temperature and rainfall change projections for 2030, 2070 mid-and 2070 high-emission scenarios, using output from the CSIRO Mark 3 global climate model. In the absence of other climate changes, mean annual pasture production at an elevated CO2 concentration of 550 ppm was predicted to be 24-29% higher than at 380 ppm CO2 in temperate (C-3) species-dominant pastures in southern Australia, with lower mean responses in a mixed C-3/C-4 pasture at Barraba in northern New South Wales (17%) and in a C-4 pasture at Mutdapilly in south-eastern Queensland (9%). In the future climate scenarios at the Barraba and Mutdapilly sites in subtropical and subhumid climates, respectively, where climate projections indicated warming of up to 4.4 degrees C, with little change in annual rainfall, modelling predicted increased pasture production and a shift towards C-4 species dominance. In Mediterranean, temperate, and cool temperate climates, climate change projections indicated warming of up to 3.3 degrees C, with annual rainfall reduced by up to 28%. Under future climate scenarios at Wagga Wagga, NSW, and Ellinbank, Victoria, our study predicted increased winter and early spring pasture growth rates, but this was counteracted by a predicted shorter spring growing season, with annual pasture production higher than the baseline under the 2030 climate scenario, but reduced by up to 19% under the 2070 high scenario. In a cool temperate environment at Elliott, Tasmania, annual production was higher than the baseline in all 3 future climate scenarios, but highest in the 2070 mid scenario. At the Wagga Wagga, Ellinbank, and Elliott sites the effect of rainfall declines on pasture production was moderated by a predicted reduction in drainage below the root zone and, at Ellinbank, the use of deeper rooted plant systems was shown to be an effective adaptation to mitigate some of the effect of lower rainfall.
Resumo:
Summary Poor land condition resulting from unsustainable grazing practices can reduce enterprise profitability and increase water, sediment and associated nutrient runoff from properties and catchments. This paper presents the results of a 6 year field study that used a series of hillslope flume experiments to evaluate the impact of improved grazing land management (GLM) on hillslope runoff and sediment yields. The study was carried out on a commercial grazing property in a catchment draining to the Burdekin River in northern Australia. During this study average ground cover on hillslopes increased from ~35% to ~75%, although average biomass and litter levels are still relatively low for this landscape type (~60 increasing to 1100 kg of dry matter per hectare). Pasture recovery was greatest on the upper and middle parts of hillslopes. Areas that did not respond to the improved grazing management had <10% cover and were on the lower slopes associated with the location of sodic soil and the initiation of gullies. Comparison of ground cover changes and soil conditions with adjacent properties suggest that grazing management, and not just improved rainfall conditions, were responsible for the improvements in ground cover in this study. The ground cover improvements resulted in progressively lower runoff coefficients for the first event in each wet season, however, runoff coefficients were not reduced at the annual time scale. The hillslope annual sediment yields declined by ~70% on two out of three hillslopes, although where bare patches (with <10% cover) were connected to gullies and streams, annual sediment yields increased in response to higher rainfall in latter years of the study. It appears that bare patches are the primary source areas for both runoff and erosion on these hillslopes. Achieving further reductions in runoff and erosion in these landscapes may require management practices that improve ground cover and biomass in bare areas, particularly when they are located adjacent to concentrated drainage lines.
Resumo:
Abstract Sceliodes cordalis, eggfruit caterpillar, is an important pest of eggplant in Australia but little information was available on its biology. This study was conducted to determine the effect of temperature on the development on eggplant of eggs, larvae and pupae. Insects were reared at five constant temperatures from 20.5°C to 30.5°C with a 12:12 L : D photoperiod and the thermal summation model was fitted to the developmental rate data. Developmental zeroes and thermal constants of 11.22°C and 61.32 day-degrees for eggs, 12.03°C and 179.60 day-degrees for larvae, and 14.43°C and 107.03 day-degrees for pupae were determined. Several larvae reared at 20.5°C entered diapause.
Resumo:
The fertility of cryopreserved Lates calcarifer sperm was studied to increase the availability of semen for routine fertilization of stripped eggs and to provide a tool for selective breeding. Semen diluted (1:4 v/v) and frozen (-196 degrees C) with 5% dimethylsulfoxide (DMSO) or 10% glycerol (final concentration) as cryoprotectants was used to inseminate freshly stripped ova. Frozen-thawed sperm were motile for about 4 min after being mixed with seawater. In the DMSO medium, post-thaw sperm activation was immediate after dilution with seawater, but in the glycerol medium maximum motility intensity was delayed for up to 1 min. When eggs and sperm were mixed before the addition of seawater, semen frozen with DMSO as cryoprotectant gave a mean hatch rate (84.1%) no different (P > 0.05) from that of unfrozen semen diluted with Ringer's solution (80.7%) or with DMSO (83.7%), but higher (P < 0.05) than that of semen frozen with glycerol (60.9%). Adding sperm to seawater 30 s before mixing with eggs did not improve the fertility of sperm cryopreserved with glycerol. Eggs inseminated with glycerol-cryoprotected sperm showed higher mortality during incubation than those inseminated with DMSO-cryoprotected sperm. Sperm held in liquid nitrogen for 90 days with DMSO as cryoprotectant yielded acceptable fertilization and hatching rates with semen-to-ova ratios of up to 1:100 (v/v) , and produced fish with no apparent abnormalities over a 29-day period after hatch. These results show that cryopreservation of L. calcarifer sperm is feasible and well suited to a variety of hatchery purposes.
Resumo:
The project will provide enough data for a reliable and robust NIRs. It will more fully develop the in vitro method to enable less costly assessment of grains in the future. It will also provide a reliable assessment for DE which is the most expensive component of pig feed.