4 resultados para 331.105.24[82]
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The parasitic weed Orobanche crenata inflicts major damage on faba bean, lentil, pea and other crops in Mediterranean environments. The development of methods to control O. crenata is to a large extent hampered by the complexity of host-parasite systems. Using a model of host-parasite interactions can help to explain and understand this intricacy. This paper reports on the evaluation and application of a model simulating host-parasite competition as affected by environment and management that was implemented in the framework of the Agricultural Production Systems Simulator (APSIM). Model-predicted faba bean and O. crenata growth and development were evaluated against independent data. The APSIM-Fababean and -Parasite modules displayed a good capability to reproduce effects of pedoclimatic conditions, faba bean sowing date and O. crenata infestation on host-parasite competition. The r(2) values throughout exceeded 0.84 (RMSD: 5.36 days) for phenological, 0.85 (RMSD: 223.00 g m(-2)) for host growth and 0.78 (RMSD: 99.82 g m(-2)) for parasite growth parameters. Inaccuracies of simulated faba bean root growth that caused some bias of predicted parasite number and host yield loss may be dealt with by more flexibly simulating vertical root distribution. The model was applied in simulation experiments to determine optimum sowing windows for infected and non-infected faba bean in Mediterranean environments. Simulation results proved realistic and testified to the capability of APSIM to contribute to the development of tactical approaches in parasitic weed control.
Resumo:
A restricted maximum likelihood analysis applied to an animal model showed no significant differences (P > 0.05) in pH value of the longissimus dorsi measured at 24 h post-mortem (pH24) between high and low lines of Large White pigs selected over 4 years for post-weaning growth rate on restricted feeding. Genetic and phenotypic correlations between pH24 and production and carcass traits were estimated using all performance testing records combined with the pH24 measurements (5.05-7.02) on slaughtered animals. The estimate of heritability for pH24 was moderate (0.29 ± 0.18). Genetic correlations between pH24 and production or carcass composition traits, except for ultrasonic backfat (UBF), were not significantly different from zero. UBF had a moderate, positive genetic correlation with pH24 (0.24 ± 0.33). These estimates of genetic correlations affirmed that selection for increased growth rate on restricted feeding is likely to result in limited changes in pH24 and pork quality since the selection does not put a high emphasis on reduced fatness.
Resumo:
In Chapter 1, the literature relating to rabies virus and the rabies like lyssaviruses is reviewed. In Chapter 2, data are presented from 1170 diagnostic submissions for ABLV testing by fluorescent antibody test (Centocor FAT). All 27 non-bat submissions were ABLV-negative. Of 1143 bat accessions 74 (16%) were ABLV-positive, including 69 of 974 (7.1%) flying foxes (Pteropus spp.), 5 of 7 (71.4%) Saccolaimus flaviventris (Yellow-bellied sheathtail bats), none of 151 other microchiropteran bats, and none of 11 unidentified bats. Statistical analysis of data from 868 wild Black, Grey-headed, Little Red and Spectacled flying foxes (Pteropus alecto, P. poliocephalus, P. scapulatus, and P. conspicillatus) indicated that three factors; species, health status and age were associated with significant (p< 0.001) differences in the proportion of ABLV-positive bats. Other factors including sex, whether the bat bit a person or animal, region, year, and season submitted, were not associated with ABLV. Case data for 74 ABLV-positive bats, including the circumstances in which they were found and clinical signs, is presented. In Chapter 3, the aetiological diagnosis was investigated for 100 consecutive flying fox submissions with neurological signs. ABLV (32%), spinal and head injuries (29%), and neuro-angiostrongylosis (18%) accounted for most neurological syndromes in flying foxes. No evidence of lead poisoning was found in unwell (n=16) or healthy flying foxes (n=50). No diagnosis was reached for 16 cases, all of which were negative for ABLV by TaqMan PCR. The molecular diversity of ABLV was examined in Chapter 4 by sequencing 36 bases of the leader sequence, the entire N gene, and start of the P gene of 28 isolates from pteropid bats and 3 isolates from Yellow-bellied sheathtail (YBST) bats. Phylogenetic analysis indicated all ABLV isolates clustered together as a discrete group within the Lyssavirus genera closely related to rabies virus and European bat lyssavirus-2 isolates. The ABLV lineage consisted of two variants; one (ybst-ABLV) consisted of isolates only from YBST bats, the other (pteropid-ABLV) was common to Black, Grey-headed and Little Red flying foxes. No associations were found between the sequences and either the geographical location or year found, or individual flying fox species. In Chapter 5, 15 inocula prepared from the brains or salivary glands of naturally-infected bats were evaluated by intracerebral (IC) and footpad (FP) inoculation of Quackenbush mice in order to select and characterize a highly virulent inoculum for further use in bats (Inoculum 5). In Chapter 6, nine Grey-headed flying foxes were inoculated with 105.2 to 105.5 MICED50 of Inoculum 5 divided into four sites, left footpad, pectoral muscle, temporal muscle and muzzle. Another bat was inoculated with half this dose divided into the footpad and pectoral muscle only. Seven of 10 bats developed clinical disease of 1 to 4 days duration between PI-days 10 and 19 and were shown to be ABL-positive by FAT, HAM immunoperoxidase staining, virus isolation in mice, and TaqMan PCR. Five of the seven bats displayed overt aggression, one died during a seizure, and one showed intractable agitation, pacing, tremors, and ataxia. Viral antigen was demonstrated throughout the central and peripheral nervous systems and in the epithelial cells of the submandibular salivary glands (n=4). All affected bats had mild to moderate non-suppurative meningoencephalitis and severe ganglioneuritis. No ABLV was detected in three bats that remained well until the end of the experiment on day 82. One survivor developed a strong but transient antibody response. In Chapter 7, the relative virulence of inocula prepared from the brains and salivary glands of experimentally infected flying foxes was evaluated in mice by IC and FP inoculation and TaqMan assay. The effects in mice were correlated to the TaqMan CT value and indicated a crude association between virulence and CT value that has potential application in the selection of inocula. In Chapter 8, 36 Black and Grey-headed flying foxes were vaccinated with one (day 0) or two (+ day 28) doses of Nobivac rabies vaccine and co-vaccinated with keyhole limpet haemocyanin (KLH). All bats responded to the Nobivac vaccine with a rabies-RFFIT titer > 0.5 IU/mL that is nominally indicative of protective immunity. Plasma from bats with rabies titres >2 IU/mL had cross-neutralising ABLV titres >1:154. A specifically developed ELISA detected a strong but transient response to KLH.
Resumo:
This paper quantifies gaseous N losses due to ammonia volatilisation and denitrification under controlled conditions at 30 degrees C and 75% to 150% of Field Capacity (FC). Biosolids were mixed with two contrasting soils from subtropical Australia at a rate designed to meet crop N requirements for irrigated cotton or maize (i.e., equivalent to 180 kg N ha(-1)). In the first experiment, aerobically (AE) and anaerobically (AN) digested biosolids were mixed into a heavy Vertosol soil and then incubated for 105 days. Ammonia volatilization over 72 days accounted for less than 4% of the applied NH4-N but 24% (AN) to 29% (AE) of the total applied biosolids' N was lost through denitrification in 105 days. In the second experiment AN biosolids with and without added polyacrimide polymer were mixed with either a heavy Vertosol or a lighter Red Ferrosol and then incubated for 98 days. The N loss was higher from the Vertosol with 16-29% of total N applied versus the Red Ferrosol with 7-10% of total N applied, while addition of polymer to the biosolids increased N loss from 7 to 10% and from 16 to 29% in the Red Ferrosol and Vertosol, respectively. A major product from the denitrification process was N-2 gas, accounting for >90% of the emitted N gases from both experiments. Our findings demonstrate that denitrification could be a major pathway of gaseous N losses under warm and moist conditions.