86 resultados para 2016 Crop Condition

em eResearch Archive - Queensland Department of Agriculture


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Crop models are simplified mathematical representations of the interacting biological and environmental components of the dynamic soil–plant–environment system. Sorghum crop modeling has evolved in parallel with crop modeling capability in general, since its origins in the 1960s and 1970s. Here we briefly review the trajectory in sorghum crop modeling leading to the development of advanced models. We then (i) overview the structure and function of the sorghum model in the Agricultural Production System sIMulator (APSIM) to exemplify advanced modeling concepts that suit both agronomic and breeding applications, (ii) review an example of use of sorghum modeling in supporting agronomic management decisions, (iii) review an example of the use of sorghum modeling in plant breeding, and (iv) consider implications for future roles of sorghum crop modeling. Modeling and simulation provide an avenue to explore consequences of crop management decision options in situations confronted with risks associated with seasonal climate uncertainties. Here we consider the possibility of manipulating planting configuration and density in sorghum as a means to manipulate the productivity–risk trade-off. A simulation analysis of decision options is presented and avenues for its use with decision-makers discussed. Modeling and simulation also provide opportunities to improve breeding efficiency by either dissecting complex traits to more amenable targets for genetics and breeding, or by trait evaluation via phenotypic prediction in target production regions to help prioritize effort and assess breeding strategies. Here we consider studies on the stay-green trait in sorghum, which confers yield advantage in water-limited situations, to exemplify both aspects. The possible future roles of sorghum modeling in agronomy and breeding are discussed as are opportunities related to their synergistic interaction. The potential to add significant value to the revolution in plant breeding associated with genomic technologies is identified as the new modeling frontier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Progress in crop improvement is limited by the ability to identify favourable combinations of genotypes (G) and management practices (M) in relevant target environments (E) given the resources available to search among the myriad of possible combinations. To underpin yield advance we require prediction of phenotype based on genotype. In plant breeding, traditional phenotypic selection methods have involved measuring phenotypic performance of large segregating populations in multi-environment trials and applying rigorous statistical procedures based on quantitative genetic theory to identify superior individuals. Recent developments in the ability to inexpensively and densely map/sequence genomes have facilitated a shift from the level of the individual (genotype) to the level of the genomic region. Molecular breeding strategies using genome wide prediction and genomic selection approaches have developed rapidly. However, their applicability to complex traits remains constrained by gene-gene and gene-environment interactions, which restrict the predictive power of associations of genomic regions with phenotypic responses. Here it is argued that crop ecophysiology and functional whole plant modelling can provide an effective link between molecular and organism scales and enhance molecular breeding by adding value to genetic prediction approaches. A physiological framework that facilitates dissection and modelling of complex traits can inform phenotyping methods for marker/gene detection and underpin prediction of likely phenotypic consequences of trait and genetic variation in target environments. This approach holds considerable promise for more effectively linking genotype to phenotype for complex adaptive traits. Specific examples focused on drought adaptation are presented to highlight the concepts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agricultural pests are responsible for millions of dollars in crop losses and management costs every year. In order to implement optimal site-specific treatments and reduce control costs, new methods to accurately monitor and assess pest damage need to be investigated. In this paper we explore the combination of unmanned aerial vehicles (UAV), remote sensing and machine learning techniques as a promising methodology to address this challenge. The deployment of UAVs as a sensor platform is a rapidly growing field of study for biosecurity and precision agriculture applications. In this experiment, a data collection campaign is performed over a sorghum crop severely damaged by white grubs (Coleoptera: Scarabaeidae). The larvae of these scarab beetles feed on the roots of plants, which in turn impairs root exploration of the soil profile. In the field, crop health status could be classified according to three levels: bare soil where plants were decimated, transition zones of reduced plant density and healthy canopy areas. In this study, we describe the UAV platform deployed to collect high-resolution RGB imagery as well as the image processing pipeline implemented to create an orthoimage. An unsupervised machine learning approach is formulated in order to create a meaningful partition of the image into each of the crop levels. The aim of this approach is to simplify the image analysis step by minimizing user input requirements and avoiding the manual data labelling necessary in supervised learning approaches. The implemented algorithm is based on the K-means clustering algorithm. In order to control high-frequency components present in the feature space, a neighbourhood-oriented parameter is introduced by applying Gaussian convolution kernels prior to K-means clustering. The results show the algorithm delivers consistent decision boundaries that classify the field into three clusters, one for each crop health level as shown in Figure 1. The methodology presented in this paper represents a venue for further esearch towards automated crop damage assessments and biosecurity surveillance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The grazing lands of northern Australia contain a substantial soil organic carbon (SOC) stock due to the large land area. Manipulating SOC stocks through grazing management has been presented as an option to offset national greenhouse gas emissions from agriculture and other industries. However, research into the response of SOC stocks to a range of management activities has variously shown positive, negative or negligible change. This uncertainty in predicting change in SOC stocks represents high project risk for government and industry in relation to SOC sequestration programs. In this paper, we seek to address the uncertainty in SOC stock prediction by assessing relationships between SOC stocks and grazing land condition indicators. We reviewed the literature to identify land condition indicators for analysis and tested relationships between identified land condition indicators and SOC stock using data from a paired-site sampling experiment (10 sites). We subsequently collated SOC stock datasets at two scales (quadrat and paddock) from across northern Australia (329 sites) to compare with the findings of the paired-site sampling experiment with the aim of identifying the land condition indicators that had the strongest relationship with SOC stock. The land condition indicators most closely correlated with SOC stocks across datasets and analysis scales were tree basal area, tree canopy cover, ground cover, pasture biomass and the density of perennial grass tussocks. In combination with soil type, these indicators accounted for up to 42% of the variation in the residuals after climate effects were removed. However, we found that responses often interacted with soil type, adding complexity and increasing the uncertainty associated with predicting SOC stock change at any particular location. We recommend that caution be exercised when considering SOC offset projects in northern Australian grazing lands due to the risk of incorrectly predicting changes in SOC stocks with change in land condition indicators and management activities for a particular paddock or property. Despite the uncertainty for generating SOC sequestration income, undertaking management activities to improve land condition is likely to have desirable complementary benefits such as improving productivity and profitability as well as reducing adverse environmental impact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two field experiments were carried out in Taveuni, Fiji to study the effects of mucuna (Mucuna pruriens) and grass fallow systems at 6 and 12 month durations on changes in soil properties (Experiment 1) and taro yields (Experiment 2). Biomass accumulation of mucuna fallow crop was significantly higher (P<0.05) than grass fallow crop at both 6 and 12 month durations. The longer fallow duration resulted in higher (P<0.05) total soil organic carbon, total soil nitrogen and earthworm numbers regardless of fallow type. Weed suppression in taro grown under mucuna was significantly greater (P<0.05) than under natural grass fallow. Taro grown under mucuna fallow significantly outyielded taro grown under grass fallow (11.8 vs. 8.8 t ha-1). Also, the gross margin of taro grown under mucuna fallow was 52% higher than that of taro grown under grass fallow. © ISHS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three types of forecasts of the total Australian production of macadamia nuts (t nut-in-shell) have been produced early each year since 2001. The first is a long-term forecast, based on the expected production from the tree census data held by the Australian Macadamia Society, suitably scaled up for missing data and assumed new plantings each year. These long-term forecasts range out to 10 years in the future, and form a basis for industry and market planning. Secondly, a statistical adjustment (termed the climate-adjusted forecast) is made annually for the coming crop. As the name suggests, climatic influences are the dominant factors in this adjustment process, however, other terms such as bienniality of bearing, prices and orchard aging are also incorporated. Thirdly, industry personnel are surveyed early each year, with their estimates integrated into a growers and pest-scouts forecast. Initially conducted on a 'whole-country' basis, these models are now constructed separately for the six main production regions of Australia, with these being combined for national totals. Ensembles or suites of step-forward regression models using biologically-relevant variables have been the major statistical method adopted, however, developing methodologies such as nearest-neighbour techniques, general additive models and random forests are continually being evaluated in parallel. The overall error rates average 14% for the climate forecasts, and 12% for the growers' forecasts. These compare with 7.8% for USDA almond forecasts (based on extensive early-crop sampling) and 6.8% for coconut forecasts in Sri Lanka. However, our somewhatdisappointing results were mainly due to a series of poor crops attributed to human reasons, which have now been factored into the models. Notably, the 2012 and 2013 forecasts averaged 7.8 and 4.9% errors, respectively. Future models should also show continuing improvement, as more data-years become available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wheat occupies a principal place in the diet of humans globally, contributing more to our daily calorie and protein intake than any other crop. For this reason, preventing weed induced yield losses in wheat has high significance for world food sustainability. Herbicides and tillage play an important role in weed control, but their use has often unacceptable consequences for humans and the wider environment. Additionally, the range of herbicides effective on key weeds is dwindling due to the evolution of herbicide resistance. Elevating crop competitiveness against weeds, through a combination of wheat breeding and innovative planting design (planting density, row spacing and orientation), has strong potential to reduce weed-induced yield losses in wheat. The last decade of research has provided a solid foundation for the breeding of weed suppressive wheat cultivars, and continued research in this area should be a focus for the future. In the interim, there is cause for optimism that weeds can be effectively suppressed using existing wheat varieties, through careful cultivar selection and choice of planting design. Further research is required to define the nature of relationships between cultivar traits and competitive planting strategies, across diverse weed flora in multiple countries, sites and seasons. Investment in such innovation promises to produce benefits, not only in terms of sustained wheat yields, but also in terms of human and ecosystem health, through ameliorating chemical and sediment contamination, soil degradation, and CO2 pollution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Northern Australian dairy farms have a large area of tropical dryland grass pasture available for use as summer pastures. Late summer-autumn in sub-tropical Australia is traditionally a difficult period in which to produce milk because of the decline in both quality and quantity of tropical grasses (Ehrlich et al. 1994). Options to improve autumn feed on dairy farms include introducing forage crops and conservation, increasing concentrate feeding and introducing legumes. Perennial tropical legumes have not been successful at this time of year because of their inability to sustain stocking rates above one cow/ha. This experiment, conducted on farms, was designed to test if annual crop legumes could be successfully oversown into tropical grass areas using minimal till methods to measure the subsequent impact on milk production on farms. Previous experiments using annual legumes in plots at Mutdapilly Research Station had demonstrated yields up to 10 t/ha can be achieved using annual tropical legumes with protein levels as high as 20% in the whole legume plant. Animal production for a consuming world : proceedings of 9th Congress of the Asian-Australasian Association of Animal Production Societies [AAAP] and 23rd Biennial Conference of the Australian Society of Animal Production [ASAP] and 17th Annual Symposium of the University of Sydney, Dairy Research Foundation, [DRF]. 2-7 July 2000, Sydney, Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traps baited with synthetic aggregation pheromone and fermenting bread dough were used to monitor seasonal incidence and abundance of the ripening fruit pests, Carpophilus hemipterus (L.), C. mutilatus Erichson and C. davidsoni Dobson in stone fruit orchards in the Leeton district of southern New South Wales during five seasons (1991-96). Adult beetles were trapped from September-May, but abundance varied considerably between years with the amount of rainfall in December-January having a major influence on population size and damage potential during the canning peach harvest (late February-March). Below average rainfall in December-January was associated with mean trap catches of < 10 beetles/trap/week in low dose pheromone traps during the harvest period in 1991/92 and 1993/94 and no reported damage to ripening fruit. Rainfall in December-January 1992/93 was more than double the average and mean trap catches ranged from 8-27 beetles/week during the harvest period with substantial damage to the peach crop. December-January rainfall was also above average in 1994/95 and 1995/96 and means of 50-300 beetles/trap/week were recorded in high dose pheromone traps during harvest periods. Carpophilus spp. caused economic damage to peach crops in both seasons. These data indicate that it may be possible to predict the likelihood of Carpophilus beetle damage to ripening stone fruit in inland areas of southern Australia, by routine pheromone-based monitoring of beetle populations and summer temperatures and rainfall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Australian researchers have been developing robust yield estimation models, based mainly on the crop growth response to water availability during the crop season. However, knowledge of spatial distribution of yields within and across the production regions can be improved by the use of remote sensing techniques. Images of Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices, available since 1999, have the potential to contribute to crop yield estimation. The objective of this study was to analyse the relationship between winter crop yields and the spectral information available in MODIS vegetation index images at the shire level. The study was carried out in the Jondaryan and Pittsworth shires, Queensland , Australia . Five years (2000 to 2004) of 250m resolution, 16-day composite of MODIS Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) images were used during the winter crop season (April to November). Seasonal variability of the profiles of the vegetation index images for each crop season using different regions of interest (cropping mask) were displayed and analysed. Correlation analysis between wheat and barley yield data and MODIS image values were also conducted. The results showed high seasonal variability in the NDVI and EVI profiles, and the EVI values were consistently lower than those of the NDVI. The highest image values were observed in 2003 (in contrast to 2004), and were associated with rainfall amount and distribution. The seasonal variability of the profiles was similar in both shires, with minimum values in June and maximum values at the end of August. NDVI and EVI images showed sensitivity to seasonal variability of the vegetation and exhibited good association (e.g. r = 0.84, r = 0.77) with winter crop yields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prediction of the initiation, appearance and emergence of leaves is critically important to the success of simulation models of crop canopy development and some aspects of crop ontogeny. Data on leaf number and crop ontogeny were collected on five cultivars of maize differing widely in maturity and genetic background grown under natural and extended photoperiods, and planted on seven sowing dates from October 1993 to March 1994 at Gatton, South-east Queensland. The same temperature coefficients were established for crop ontogeny before silking, and the rates of leaf initiation, leaf tip appearance and full leaf expansion, the base, optimum and maximum temperatures for each being 8, 34 and 40 degrees C. After silking, the base temperature for ontogeny was 0 degrees C, but the optimum and maximum temperatures remained unchanged. The rates of leaf initiation, appearance of leaf tips and full leaf expansion varied in a relatively narrow range across sowing times and photoperiod treatments, with average values of 0.040 leaves (degrees Cd)-1, 0.021 leaves (degrees Cd)-1, and 0.019 leaves (degrees Cd)-1, respectively. The relationships developed in this study provided satisfactory predictions of leaf number and crop ontogeny (tassel initiation to silking, emergence to silking and silking to physiological maturity) when assessed using independent data from Gatton (South eastern Queensland), Katherine and Douglas Daly (Northern Territory), Walkamin (North Queensland) and Kununurra (Western Australia).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physiological and genetic studies of leaf growth often focus on short-term responses, leaving a gap to whole-plant models that predict biomass accumulation, transpiration and yield at crop scale. To bridge this gap, we developed a model that combines an existing model of leaf 6 expansion in response to short-term environmental variations with a model coordinating the development of all leaves of a plant. The latter was based on: (1) rates of leaf initiation, appearance and end of elongation measured in field experiments; and (2) the hypothesis of an independence of the growth between leaves. The resulting whole-plant leaf model was integrated into the generic crop model APSIM which provided dynamic feedback of environmental conditions to the leaf model and allowed simulation of crop growth at canopy level. The model was tested in 12 field situations with contrasting temperature, evaporative demand and soil water status. In observed and simulated data, high evaporative demand reduced leaf area at the whole-plant level, and short water deficits affected only leaves developing during the stress, either visible or still hidden in the whorl. The model adequately simulated whole-plant profiles of leaf area with a single set of parameters that applied to the same hybrid in all experiments. It was also suitable to predict biomass accumulation and yield of a similar hybrid grown in different conditions. This model extends to field conditions existing knowledge of the environmental controls of leaf elongation, and can be used to simulate how their genetic controls flow through to yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The parasitic weed Orobanche crenata inflicts major damage on faba bean, lentil, pea and other crops in Mediterranean environments. The development of methods to control O. crenata is to a large extent hampered by the complexity of host-parasite systems. Using a model of host-parasite interactions can help to explain and understand this intricacy. This paper reports on the evaluation and application of a model simulating host-parasite competition as affected by environment and management that was implemented in the framework of the Agricultural Production Systems Simulator (APSIM). Model-predicted faba bean and O. crenata growth and development were evaluated against independent data. The APSIM-Fababean and -Parasite modules displayed a good capability to reproduce effects of pedoclimatic conditions, faba bean sowing date and O. crenata infestation on host-parasite competition. The r(2) values throughout exceeded 0.84 (RMSD: 5.36 days) for phenological, 0.85 (RMSD: 223.00 g m(-2)) for host growth and 0.78 (RMSD: 99.82 g m(-2)) for parasite growth parameters. Inaccuracies of simulated faba bean root growth that caused some bias of predicted parasite number and host yield loss may be dealt with by more flexibly simulating vertical root distribution. The model was applied in simulation experiments to determine optimum sowing windows for infected and non-infected faba bean in Mediterranean environments. Simulation results proved realistic and testified to the capability of APSIM to contribute to the development of tactical approaches in parasitic weed control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Both sorghum (Sorghum bicolor) and sugarcane (Saccharum officinarum) are members of the Andropogoneae tribe in the Poaceae and are each other's closest relatives amongst cultivated plants. Both are relatively recent domesticates and comparatively little of the genetic potential of these taxa and their wild relatives has been captured by breeding programmes to date. This review assesses the genetic gains made by plant breeders since domestication and the progress in the characterization of genetic resources and their utilization in crop improvement for these two related species. Genetic Resources: The genome of sorghum has recently been sequenced providing a great boost to our knowledge of the evolution of grass genomes and the wealth of diversity within S. bicolor taxa. Molecular analysis of the Sorghum genus has identified close relatives of S. bicolor with novel traits, endosperm structure and composition that may be used to expand the cultivated gene pool. Mutant populations (including TILLING populations) provide a useful addition to genetic resources for this species. Sugarcane is a complex polyploid with a large and variable number of copies of each gene. The wild relatives of sugarcane represent a reservoir of genetic diversity for use in sugarcane improvement. Techniques for quantitative molecular analysis of gene or allele copy number in this genetically complex crop have been developed. SNP discovery and mapping in sugarcane has been advanced by the development of high-throughput techniques for ecoTILLING in sugarcane. Genetic linkage maps of the sugarcane genome are being improved for use in breeding selection. The improvement of both sorghum and sugarcane will be accelerated by the incorporation of more diverse germplasm into the domesticated gene pools using molecular tools and the improved knowledge of these genomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic backcrossed-derived bread wheats (SBWs) from CIMMYT were grown in the north-west of Mexico (CIANO) and sites across Australia during 3 seasons. A different set of lines was evaluated each season, as new materials became available from the CIMMYT crop enhancement program. Previously, we have evaluated both the performance of genotypes across environments and the genotype x environment interaction (G x E). The objective of this study was to interpret the G x E for yield in terms of crop attributes measured at individual sites and to identify the potential environmental drivers of this interaction. Groups of SBWs with consistent yield performance were identified, often comprising closely related lines. However, contrasting performance was also relatively common among sister lines or between a recurrent parent and its SBWs. Early flowering was a common feature among lines with broad adaptation and/or high yield in the northern Australian wheatbelt, while yields in the southern region did not show any association with the maturity type. Lines with high yields in the southern and northern regions had cooler canopies during flowering and early grain filling. Among the SBWs with Australian genetic backgrounds, lines best adapted to CIANO were tall (>100 cm), with a slightly higher ground cover. These lines also displayed a higher concentration of water-soluble carbohydrates in the stem at flowering, which was negatively correlated with stem number per unit area when evaluated in southern Australia (Horsham). Possible reasons for these patterns are discussed. Selection for yield at CIANO did not specifically identify the lines best adapted to northern Australia, although they were not the most poorly adapted either. In addition, groups of lines with specific adaptation to the south would not have been selected by choosing the highest yielding lines at CIANO. These findings suggest that selection at CIMMYT for Australian environments may be improved by either trait based selection or yield data combined with trait information. Flowering date, canopy temperature around flowering, tiller density, and water-soluble carbohydrate concentration in the stem at flowering seem likely candidates.