2 resultados para 17-165

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of a more efficient in vitro regeneration system for somatic embryos (SEs) of avocado (Persea americana) would facilitate the development of new superior cultivars for this valuable horticultural crop. In this study, we report a new and efficient method for maintenance and regeneration of avocado SEs. Avocado SEs of four cultivars remained healthy and viable in vitro for 11 months on a medium used for mango somatic embryogenesis, compared with 3-4 months on Murashige and Skoog medium. Various supplements and media modifications were investigated to improve the low conversion rate of regenerated plants from avocado SEs reported previously. The one-step system for regeneration of white-opaque somatic embryos (WOSEs) used solid medium only over a period of 12-14 weeks (sub-culturing every 6 weeks). Addition of praline and glutamine improved the total regeneration from 0 to 17.5% and 10.5%, and plant/shoot recovery from 0 to 12.5% and 5%, respectively. A two-step culture system involving the transfer of WOSEs of cultivar 'Reed' after 6 weeks on solid to liquid medium for 12-15 days as an intermediate step, followed by subculturing again onto solid medium for 6 weeks improved total regeneration to 29% and plant/shoot recovery to 18.3 from 0% when regenerated by subculturing on solid medium only. Supplementation with proline in the solid as well as liquid medium in the two-step culture system at 0.4 g/L increased total regeneration to 35% and plant/shoot recovery to 20%. We were able to achieve highest regeneration using glutamine at 1 g/L in the two-step culture system in terms of both total regeneration (58.3%, including 43.3% bipolar regeneration) and plant/shoot recovery (36.7%) rates, which were significantly higher than in any other treatment investigated. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scabies is an ectoparasitic infestation by the mite Sarcoptes scabiei. Although commonly self-limiting, a fraction of patients develop severely debilitating crusted scabies. The immune mechanisms underlying the development of crusted scabies are unclear, and undertaking longitudinal infection studies in humans is difficult. We utilized a porcine model to compare cellular immune responses in peripheral blood and skin of pigs with different clinical manifestations of scabies (n = 12), and in uninfected controls (n = 6). Although clinical symptoms were not evident until at least 4 weeks post-infestation, the numbers of peripheral IFNγ-secreting CD4+ T cells and γδ T cells increased in infected pigs from week 1 post-infestation. γδ T cells remained increased in the blood at week 15 post-infestation. At week 15, skin cell infiltrates from pigs with crusted scabies had significantly higher CD8+ T cell, γδ T cell and IL-17+ cell numbers than those with ordinary scabies. Peripheral IL-17 levels were not increased, suggesting that localized skin IL-17-secreting T cells may play a critical role in the pathogenesis of crusted scabies development. Given the potential of anti-IL-17 immunotherapy demonstrated for other inflammatory skin diseases, this study may provide a novel therapeutic avenue for patients with recurrent crusted scabies.