8 resultados para 164-996C
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The hypothesis that contaminant plants growing amongst chickpea serve as Helicoverpa sinks by diverting oviposition pressure away from the main crop was tested under field conditions. Gain (recruitment) and loss (presumed mortality) of juvenile stages of Helicoverpa spp. on contaminant faba bean and wheat plants growing in chickpea plots were quantified on a daily basis over a 12-d period. The possibility of posteclosion movement of larvae from the contaminants to the surrounding chickpea crop was examined. Estimated total loss of the census population varied from 80 to 84% across plots and rows. The loss of brown eggs (40–47%) contributed most to the overall loss estimate, followed by loss of white eggs (27–35%) and larvae (6–9%). The cumulative number of individuals entering the white and brown egg and larval stages over the census period ranged from 15 to 58, 10–48 and 1–6 per m row, respectively. The corresponding estimates of mean stage-specific loss, expressed as a percentage of individuals entering the stage, ranged from 52 to 57% for white eggs, 87–108% for brown eggs and 71–87% for first-instar larvae. Mean larval density on chickpea plants in close proximity to the contaminant plants did not exceed the baseline larval density on chickpea further away from the contaminants across rows and plots. The results support the hypothesis that contaminant plants in chickpea plots serve as Helicoverpa sinks by diverting egg pressure from the main crop and elevating mortality of juvenile stages. Deliberate contamination of chickpea crops with other plant species merits further investigation as a cultural pest management strategy for Helicoverpa spp.
Resumo:
To improve the sustainability and environmental accountability of the banana industry there is a need to develop a set of soil health indicators that integrate physical, chemical and biological soil properties. These indicators would allow banana growers, extension and research workers to improve soil health management practices. To determine changes in soil properties due to the cultivation of bananas, a paired site survey was conducted comparing soil properties under conventional banana systems to less intensively managed vegetation systems, such as pastures and forest. Measurements were made on physical, chemical and biological soil properties at seven locations in tropical and sub-tropical banana producing areas. Soil nematode community composition was used as a bioindicator of the biological properties of the soil. Soils under conventional banana production tended to have a greater soil bulk density, with less soil organic carbon (C) (both total C and labile C), greater exchangeable cations, higher extractable P, greater numbers of plant-parasitic nematodes and less nematode diversity, relative to less intensively managed plant systems. The organic banana production systems at two locations had greater labile C, relative to conventional banana systems, but there was no significant change in nematode community composition. There were significant interactions between physical, chemical and nematode community measurements in the soil, particularly with soil C measurements, confirming the need for a holistic set of indicators to aid soil management. There was no single indicator of soil health for the Australian banana industry, but a set of soil health indicators, which would allow the measurement of soil improvements should include: bulk density, soil C, pH, EC, total N, extractable P, ECEC and soil nematode community structure.
Resumo:
There are renewed calls for end-user participation and the integration of local knowledge in agricultural research. In Australia, the response has included an increased emphasis on participatory on-farm research with farmers and commercial agronomists that tests accepted principals to answer practical local farming questions. However, this pursuit of greater relevance has often led to compromises in research designs, unclear results and frustration amongst farmers, commercial agronomists and Research Development and Extension (RDE) agency researchers. This paper reports on a series of pre-season planning workshops from `Doing successful on-farm research', a workshop-based initiative that provides guidelines and a series of interactive activities to plan better participatory on-farm research. The workshop approach helps people design on-farm research that is appropriate to their own needs and local conditions. It assists them to clearly identify their issues, develop specific research questions and decide the best approach to answer those questions with the appropriate rigour for their own situations. These `Doing successful on-farm research' workshops address four potential deficiencies in on-farm research and farming systems RDE more generally in Australia: (1) variable participation of scientists and farmers in on-farm research; (2) the lack of clear guidelines for effective participatory practice and on-farm research; (3) limited support for on-farm research beyond the intensive investigations conducted by RDE agencies and (4) limited support for industry and farmers to contextualise information and research outcomes for specific individual circumstances and faster adaptation of technology. This may be a valuable contribution to balancing the demands for both relevance and rigour in on-farm research in Australia. In "Ground–breaking Stuff’- Proceedings of the 13th Australian Society of Agronomy Conference, 10-14 September 2006, Perth, Western Australia.
Resumo:
From a study of 3 large half-sib families of cattle, we describe linkage between DNA polymorphisms on bovine chromosome 7 and meat tenderness. Quantitative trait loci (QTL) for Longissimus lumborum peak force (LLPF) and Semitendonosis adhesion (STADH) were located to this map of DNA markers, which includes the calpastatin ( CAST) and lysyl oxidase (LOX) genes. The LLPF QTL has a maximum lodscore of 4.9 and allele substitution of approximately 0.80 of a phenotypic standard deviation, and the peak is located over the CAST gene. The STADH QTL has a maximum lodscore of 3.5 and an allele substitution of approximately 0.37 of a phenotypic standard deviation, and the peak is located over the LOX gene. This suggests 2 separate likelihood peaks on the chromosome. Further analyses of meat tenderness measures in the Longissimus lumborum, LLPF and LL compression (LLC), in which outlier individuals or kill groups are removed, demonstrate large shifts in the location of LLPF QTL, as well as confirming that there are indeed 2 QTL on bovine chromosome 7. We found that both QTL are reflected in both LLPF and LLC measurements, suggesting that both these components of tenderness, myofibrillar and connective tissue, are detected by both measurements in this muscle.
Resumo:
Strawberry lethal yellows (SLY) disease in Australia is associated with the phytoplasmas Candidatus Phytoplasma australiense and tomato big bud, and a rickettsia-like-organism (RLO). Ca. P. australiense is also associated with strawberry green petal (SGP) disease. This study investigated the strength of the association of the different agents with SLY disease. We also documented the location of SLY or SGP plants, and measured whether they were RLO or phytoplasma positive. Symptomatic strawberry plants collected from south-east Queensland (Australia) between January 2000 and October 2002 were screened by PCR for both phytoplasmas and the RLO. Two previously unreported disease symptoms termed severe fruit distortion (SFD) and strawberry leaves from fruit (SLF) were observed during this study but there was no clear association between these symptoms and phytoplasmas or the RLO. Only two SGP diseased plants were observed and collected, compared with 363 plants with SLY disease symptoms. Of the 363 SLY samples, 117 tested positive for the RLO, 67 tested positive for Ca. P. australiense AGY strain and 11 plants tested positive for Ca. P. australiense PYL variant strain. On runner production farms at Stanthorpe, Queensland the RLO was detected in SLY diseased plants more frequently than for the phytoplasmas. On fruit production farms on the Sunshine Coast, Queensland, Ca. P. australiense was detected in SLY disease plants more frequently than the RLO.
Resumo:
A rich suite of pasture legumes and grasses have been released for the Queensland grain belt, particularly from forage evaluation programs carried out during the past 50 years (Gramshaw and Walker 1988; http://www.pi.csiro.au/ahpc/). Thus, there is an extensive and comprehensive knowledge of the adaptation of those species and adaptation is being extended widely - for example, to farmer groups in 'LeyGrain' workshops developed and delivered by the authors, and as written information (e.g. Lloyd et al. 2006; 2007a; 2007b) and on the website www.dpi.qld.gov.au. However, our knowledge is broad and, as we come to understand natural systems, their limitations and the extent of variation within those systems, it is equally clear that our knowledge of pasture plant adaptation is not as well defined as it needs to be. It is an interesting conflict - the more we understand, the more we begin to realise our lack of understanding. The appropriate species for sowing in different situations are discussed.
Resumo:
Background: Queensland fruit fly, Bactrocera tryoni, is the major pest fruit fly in Australia. Protein bait sprays, where insecticides are mixed with spot applications of a protein based food lure, are one of the sustainable pre-harvest fruit fly management strategies used in Australia. Although protein bait sprays do manage fruit fly infestation in the field, there is little science underpinning this technique and so improving its efficacy is difficult. Lacking information includes where and when to apply protein bait in order to best target foraging B. tryoni. As part of new work in this area, we investigated the effect of height of protein on tree and host plant fruiting status on the spatial and temporal protein foraging patterns of B. tryoni. MEthod: The work was conducted in the field using nectarine and guava plants and wild B. tryoni at Redland Bay, Queensland, Australia. Spot sprays of protein bait were applied to the foliage of randomly selected fruiting and non-fruiting trees. Each tree received protein bait spot sprays on the lower and higher foliage at 0530hrs. The number, sex and species of flies that fed on each protein spot were recorded hourly from 0600hrs through to 1800hrs.Results: For nectarines, there was a significant difference in the number of B. tryoni feeding on protein bait placed at different locations within the tree (ANOVA, F = 8.898, p = 0.001). More flies fed on protein placed on higher foliage relative to lower, irrespective of the fruiting status of the nectarine trees. A significant difference was also observed in the diurnal protein feeding pattern of B. tryoni (ANOVA, F = 2.164, p = 0.024), with more flies feeding at 1600hrs. Results for guava are still being collected and will be presented at the meeting.Conclusions: We conclude that B. tryoni effectively forages for protein at heights higher than 1.3m from ground, indicating greater efficacy of protein bait when applied at foliage higher in the canopy. Bactrocera tryoni actively forages for protein throughout the day, with a highest feeding peak at 1600hrs. The lack of significant difference in the spatial protein foraging pattern between fruiting and non-fruiting nectarine trees may be a real result, or may have resulted from the fruiting tree being very close (within 1 – 2 metres) of the non-fruiting tree. This hypothesis is being tested in the guava trial.
Resumo:
Infectious coryza is an upper respiratory disease of chickens caused by Avibacterium paragallinarum. Outbreaks of infectious coryza caused by Av. paragallinarum serovar C-1 isolates in coryza-vaccinated flocks in Ecuador and Mexico have been reported. In the current study, the protection conferred by four commercially available, trivalent infectious coryza vaccines in chickens challenged with a serovar C-1 isolate from an apparent coryza vaccine failure in a layer flock in Mexico was evaluated. Only one infectious coryza vaccine provided a good protection level (83%) in vaccinated chickens. These results might explain the infectious coryza outbreaks in vaccinated flocks that have been observed in the field.