2 resultados para „big bang urbain“
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Over recent decades, Australian piggeries have commonly employed anaerobic ponds to treat effluent to a standard suitable for recycling for shed flushing purposes and for irrigation onto nearby agricultural land. Anaerobic ponds are generally sized according to the Rational Design Standard (RDS) developed by Barth (1985), resulting in large ponds, which can be expensive to construct, occupy large land areas, and are difficult and expensive to desludge, potentially disrupting the whole piggery operation. Limited anecdotal and scientific evidence suggests that anaerobic ponds that are undersized according to the RDS, operate satisfactorily, without excessive odour emission, impaired biological function or high rates of solids accumulation. Based on these observations, this paper questions the validity of rigidly applying the principles of the RDS and presents a number of alternate design approaches resulting in smaller, more highly loaded ponds that are easier and cheaper to construct and manage. Based on limited data of pond odour emission, it is suggested that higher pond loading rates may reduce overall odour emission by decreasing the pond volume and surface area. Other management options that could be implemented to reduce pond volumes include permeable pond covers, various solids separation methods, and bio-digesters with impermeable covers, used in conjunction with biofilters and/or systems designed for biogas recovery. To ensure that new effluent management options are accepted by regulatory authorities, it is important for researchers to address both industry and regulator concerns and uncertainties regarding new technology, and to demonstrate, beyond reasonable doubt, that new technologies do not increase the risk of adverse impacts on the environment or community amenity. Further development of raw research outcomes to produce relatively simple, practical guidelines and implementation tools also increases the potential for acceptance and implementation of new technology by regulators and industry.
Resumo:
What is calf wastage. Breeding female cattle in north Australia contribute best to business success by producing a heavy weaner each year at the first weaning round. This maximises increase in value by the cow unit over the year, generally from mid-year to mid-year. The ability to cycle in both maiden heifers and lactating cows is the primary limitation to achieving this. Wastage of a calf at any stage between conception and weaning also substantially limits fertility and value increase at a herd level. Embryo loss may result in later calves as cows re-conceive; the calves produced are smaller at weaning and have to be weaned later into the dry season. Late calf wastage usually results in breeders missing a calf for the year. Late calving often also results in failure to cycle, thus cows rear a calf in the subsequent year.