5 resultados para åk 4-6
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The major cuticular hydrocarbons from the cane beetle species Antitrogus parvulus were deduced to be 4,6,8,10,16,18-hexa- and 4,6,8,10,16- pentamethyldocosanes 2 and 3, respectively. Isomers of 2,4,6,8-tetramethylundecanal 27, 36, and 37, derived from 2,4,6-trimethylphenol, were coupled with the phosphoranes 28 and 29 to furnish alkenes and, by reduction, diastereomers of 2 and 3. Chromatographic and spectroscopic comparisons confirmed 2 as either 6a or 6b and 3 as either 34a or 34b.
Resumo:
Residue retention is an important issue in evaluating the sustainability of production forestry. However, its long-term impacts have not been studied extensively, especially in sub-tropical environments. This study investigated the long-term impact of harvest residue retention on tree nutrition, growth and productivity of a F1 hybrid (Pinus elliottii var. elliottii × Pinus caribaea var. hondurensis) exotic pine plantation in sub-tropical Australia, under three harvest residue management regimes: (1) residue removal, RR0; (2) single residue retention, RR1; and (3) double residue retention, RR2. The experiment, established in 1996, is a randomised complete block design with 4 replicates. Tree growth measurements in this study were carried out at ages 2, 4, 6, 8 and 10 years, while foliar nutrient analyses were carried out at ages 2, 4, 6 and 10 years. Litter production and litter nitrogen (N) and phosphorus (P) measurements were carried out quarterly over a 15-month period between ages 9 and 10 years. Results showed that total tree growth was still greater in residue-retained treatments compared to the RR0 treatment. However, mean annual increments of diameter at breast height (MAID) and basal area (MAIB) declined significantly after age 4 years to about 68-78% at age 10 years. Declining foliar N and P concentrations accounted for 62% (p < 0.05) of the variation of growth rates after age 4 years, and foliar N and P concentrations were either marginal or below critical concentrations. In addition, litter production, and litter N and P contents were not significantly different among the treatments. This study suggests that the impact of residue retention on tree nutrition and growth rates might be limited over a longer period, and that the integration of alternative forest management practices is necessary to sustain the benefits of harvest residues until the end of the rotation.
Resumo:
Mature green mango fruits of commercially important varieties were screened to investigate the levels of constitutive antifungal compounds in peel and to assess anthracnose disease after inoculation with Colletotrichum gloeosporioides. High pressure liquid chromatography was used to quantify the levels of 5-n-heptadecenylresorcinol and 5-n-pentadecylresorcinol in the peel extracts. The fruit peel of the varieties ‘Kensington Pride’ and ‘Keitt’ were observed to have the highest levels of both 5-n-heptadecenylresorcinol (107.3-123.7 and 49.9-61.4 μg/g FW, respectively) and 5-n-pentadecylresorcinol (6.32-7.99 and 3.30-6.05 μg/g FW, respectively), and the fruit of the two varieties were found to have some resistance to postharvest anthracnose. The varieties ‘Kent’, ‘R2E2’, ‘Nam Doc Mai’, ‘Calypso’, and ‘Honey Gold’ contained much lower concentrations of resorcinols in their peel and three of these varieties were found to be more susceptible to anthracnose. Concentrations of 5-nheptadecenylresorcinol were significantly lower at the ‘sprung’ and ‘eating ripe’ stages of ripening compared to levels at harvest. Concentrations of 5-n-pentadecylresorcinol did not differ significantly across the three stages of ripening. The levels of these two resorcinols were found to be strongly inter-correlated (P < 0.001, r2 = 0.71), with concentrations of 5-nheptadecenylresorcinol being an average 18 times higher than those of 5-npentadecylresorcinol. At the ‘eating ripe’ stage, significant relationships were observed between the concentrations of each type of alk(en)ylresorcinol and anthracnose lesion areas following postharvest inoculation, P<0.001, r2= 0.69 for 5-n pentadecylresorcinol, and P<0.001, r2= 0.44 for 5-n-heptadecenylresorcinol.
Resumo:
The effects of recycled water (effluent) on 8 tropical grasses growing in 100-L bags of sand were studied in Murrumba Downs, just north of Brisbane in southern Queensland (27.4°S, 153.1°E). The species used were: Axonopus compressus (broad-leaf carpetgrass), Cynodon dactylon (bermudagrass 'Winter Green') and C. dactylon x C. transvaalensis hybrid ('Tifgreen'), Digitaria didactyla (Queensland blue couch), Paspalum notatum (bahiagrass '38824'), Stenotaphrum secundatum (buffalograss 'Palmetto'), Eremochloa ophiuroides (centipedegrass 'Centec') and Zoysia japonica (zoysiagrass 'ZT-11'). From May 2002 to June 2003, control plots were irrigated with potable water and fertilised monthly. Plots irrigated with effluent received no fertiliser from May to August 2002 (deficient phase), complete fertilisers at control rates from September to December 2002 (recovery phase) and nitrogen (N) only at control rates from January to June 2003 (supplementary phase). In October 2002, the average shoot weight of plants from the effluent plots was 4% of that from potable plots, with centipedegrass less affected than the other species (relative growth of 20%). Shoot N concentrations declined by 40% in the effluent plots from May to August 2002 (1.8 ± 0.1%) along with phosphorus (P, 0.46 ± 0.02%), potassium (K, 1.6 ± 0.2%), sulfur (S, 0.28 ± 0.02%) and manganese (Mn, 19 ± 2 mg/kg) concentrations. Only the N and Mn concentrations were below the optimum for grasses. The grasses grew satisfactorily when irrigated with effluent if it was supplemented with N. Between January and June 2003 the average weight of shoots from the effluent plots was 116% of the weight of shoots from the control plots. Shoot nutrient concentrations were also similar in the 2 regimes at this time. The recycled water supplied 23% of the N required for maximum shoot growth, 80-100% of the P and K, and 500-880% of the S, calcium and magnesium. The use of recycled water represents savings in irrigation and fertiliser costs, and reductions in the discharge of N and P to local waterways. Effluent is currently about 50% of the cost of potable water with a saving of about AU$8000/ha.year for a typical sporting field.
Resumo:
Aconophora compressa (Hemiptera: Membracidae), a biological control agent introduced against the weed Lantana camara (Verbenaceae) in Australia, has since been observed on several non-target plant species, including native mangrove Avicennia marina (Acanthaceae). In this study we evaluated the suitability of two native mangroves, A. marina and Aegiceras corniculatum (Myrsinaceae), for the survival and development of A. compressa through no-choice field cage studies. The longevity of females was significantly higher on L. camara (57.7 ± 3.8 days) than on A. marina (43.3 ± 3.3 days) and A. corniculatum (45.7 ± 3.8 days). The proportion of females laying eggs was highest on L. camara (72%) followed by A. marina (36%) and A. corniculatum (17%). More egg batches per female were laid on L. camara than on A. marina and A. corniculatum. Though more nymphs per shoot emerged on L. camara (29.9 ± 2.8) than on A. marina (13 ± 4.8) and A. corniculatum (10 ± 5.3), the number of nymphs that developed through to adults was not significantly different. The duration of nymphal development was longer on A. marina (67 ± 5.8 days) than on L. camara (48 ± 4 days) and A. corniculatum (43 ± 4.6 days). The results, which are in contrast to those from previous glasshouse and quarantine trials, provide evidence that A. compressa adults can survive, lay eggs and complete nymphal development on the two non-target native mangroves in the field under no-choice condition.