22 resultados para [JEL:Q31] Agricultural and Natural Resource Economics
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Natural Resource Management project developing reources and supporting best practice management for irrigated cotton and grain growers in Queensland.
Resumo:
The farm-gate value of extensive beef production from the northern Gulf region of Queensland, Australia, is ~$150 million annually. Poor profitability and declining equity are common issues for most beef businesses in the region. The beef industry relies primarily on native pasture systems and studies continue to report a decline in the condition and productivity of important land types in the region. Governments and Natural Resource Management groups are investing significant resources to restore landscape health and productivity. Fundamental community expectations also include broader environmental outcomes such as reducing beef industry greenhouse gas emissions. Whole-of-business analysis results are presented from 18 extensive beef businesses (producers) to highlight the complex social and economic drivers of management decisions that impact on the natural resource and environment. Business analysis activities also focussed on improving enterprise performance. Profitability, herd performance and greenhouse emission benchmarks are documented and discussed.
Resumo:
In recent years, there have been significant developments in climate science relevant to agriculture and natural resource management. Assessing impacts of climate variability and use of seasonal climate forecasts have become increasingly important elements in the management "toolkit" for many Australian farmers. Consideration of climate change further increases the need for improved management strategies. While climate risk extension activities have kept pace with advances in climate science, a national review of the Vocational Education and Training system in Australia in relation to "weather and climate" showed that these topics were "poorly represented" at the management level in the Australian Qualifications Framework, and needed increased emphasis. Consequently, a new Unit of Competency concerning management of climatic risk was developed and accredited to address this deficiency. The objective of the unit was to build knowledge and skills for better management of climate variability via the elements of surveying climatic and enterprise data; analysing climatic risks and opportunities; and developing climatic risk management strategies. This paper describes establishment of a new unit for vocational education that is designed to harness recent developments in applied climate science for better management of Australia's highly variable climate. The main benefits of the new unit of competency, "Developing climatic risk management strategies,"were seen as improving decisions in climate and agriculture, and reducing climate risk exposure to enhance sustainable agriculture. The educational unit is now within the scope of agricultural colleges, universities, and registered training organisations as an accredited unit.
Resumo:
Soils with high levels of chloride and/or sodium in their subsurface layers are often referred to as having subsoil constraints (SSCs). There is growing evidence that SSCs affect wheat yields by increasing the lower limit of a crop's available soil water (CLL) and thus reducing the soil's plant-available water capacity (PAWC). This proposal was tested by simulation of 33 farmers' paddocks in south-western Queensland and north-western New South Wales. The simulated results accounted for 79% of observed variation in grain yield, with a root mean squared deviation (RMSD) of 0.50 t/ha. This result was as close as any achieved from sites without SSCs, thus providing strong support for the proposed mechanism that SSCs affect wheat yields by increasing the CLL and thus reducing the soil's PAWC. In order to reduce the need to measure CLL of every paddock or management zone, two additional approaches to simulating the effects of SSCs were tested. In the first approach the CLL of soils was predicted from the 0.3-0.5 m soil layer, which was taken as the reference CLL of a soil regardless of its level of SSCs, while the CLL values of soil layers below 0.5 m depth were calculated as a function of these soils' 0.3-0.5 m CLL values as well as of soil depth plus one of the SSC indices EC, Cl, ESP, or Na. The best estimates of subsoil CLL values were obtained when the effects of SSCs were described by an ESP-dependent function. In the second approach, depth-dependent CLL values were also derived from the CLL values of the 0.3-0.5 m soil layer. However, instead of using SSC indices to further modify CLL, the default values of the water-extraction coefficient (kl) of each depth layer were modified as a function of the SSC indices. The strength of this approach was evaluated on the basis of correlation of observed and simulated grain yields. In this approach the best estimates were obtained when the default kl values were multiplied by a Cl-determined function. The kl approach was also evaluated with respect to simulated soil moisture at anthesis and at grain maturity. Results using this approach were highly correlated with soil moisture results obtained from simulations based on the measured CLL values. This research provides strong evidence that the effects of SSCs on wheat yields are accounted for by the effects of these constraints on wheat CLL values. The study also produced two satisfactory methods for simulating the effects of SSCs on CLL and on grain yield. While Cl and ESP proved to be effective indices of SSCs, EC was not effective due to the confounding effect of the presence of gypsum in some of these soils. This study provides the tools necessary for investigating the effects of SSCs on wheat crop yields and natural resource management (NRM) issues such as runoff, recharge, and nutrient loss through simulation studies. It also facilitates investigation of suggested agronomic adaptations to SSCs.
Resumo:
Development of a Gulf community based natural resource monitoring program, with sawfish as an initial focus.
Resumo:
There is limited understanding about how insect movement patterns are influenced by landscape features, and how landscapes can be managed to suppress pest phytophage populations in crops. Theory suggests that the relative timing of pest and natural enemy arrival in crops may influence pest suppression. However, there is a lack of data to substantiate this claim. We investigate the movement patterns of insects from native vegetation (NV) and discuss the implications of these patterns for pest control services. Using bi-directional interception traps we quantified the number of insects crossing an NV/crop ecotone relative to a control crop/crop interface in two agricultural regions early in the growing season. We used these data to infer patterns of movement and net flux. At the community-level, insect movement patterns were influenced by ecotone in two out of three years by region combinations. At the functional-group level, pests and parasitoids showed similar movement patterns from NV very soon after crop emergence. However, movement across the control interface increased towards the end of the early-season sampling period. Predators consistently moved more often from NV into crops than vice versa, even after crop emergence. Not all species showed a significant response to ecotone, however when a response was detected, these species showed similar patterns between the two regions. Our results highlight the importance of NV for the recruitment of natural enemies for early season crop immigration that may be potentially important for pest suppression. However, NV was also associated with crop immigration by some pest species. Hence, NV offers both opportunities and risks for pest management. The development of targeted NV management may reduce the risk of crop immigration by pests, but not of natural enemies.
Resumo:
Near infrared spectroscopy (NIRS) can play a vital role as a cost effective, rapid, non-invasive, reproducible diagnostic tool for many environmental management, agricultural and industrial waste water monitoring applications. In this paper we highlight the ability of NIRS technology to be used as a diagnostic tool in agricultural and environmental applications through the successful assessment of Fourier Transform NIRS to predict α santalol in sandalwood chip samples, and maturity of ‘Hass’ avocado fruit based on dry matter content. Presented at the Third International Conference on Challenges in Environmental Science & Engineering, CESE-2010. 26 September – 1 October 2010, The Sebel, Cairns, Queensland, Australia.
Resumo:
Weather is a general stochastic influence on the life history of weeds. In contrast, anthropogenic disturbance (e.g. land use) is an important deterministic influence on weed demography. Our aim with this study was to investigate the relative contributions of land use and weather on the demography of Lantana camara (lantana), a weed of agricultural and natural habitats, based on the intensive monitoring of lantana populations under three land uses (viz. farm[pasture], and burnt and grazed forests) in subtropical Australia. Lantana populations were growing vigorously across all land uses (asymptotic population growth rate, lambda > 3). Examination of historical demography using retrospective perturbation analyses showed that weather was a strong influence on lantana demography with the transition from an El Nino (2008-09) to a La Nina (2009-10) year having a strong positive effect on population growth rate. This effect was most marked at the grazed site, and to a lesser extent at the burnt site, with seedling-to-juvenile and juvenile-to-adult transitions contributing most to these effects. This is likely the result of burning and grazing having eliminated/reduced interspecific competition at these sites. Prospective perturbation analyses revealed that lambda was most sensitive to proportionate changes in growth transitions, followed by fecundity and survival transitions. Examination of context-specific patterns in elasticity revealed that growth and fecundity transitions are likely to be the more critical vital rates to reduce lambda in wet years at the burnt and grazed forest sites, compared to the farm/pasture site. Management of lantana may need to limit the transition of juveniles into the adult stages, especially in sites where lantana is free from competition (e.g. in the presence of fire or grazing), and this particularly needs to be achieved in wet years. Collectively, these results shed light on aspects of spatial and temporal variation in the demography of lantana, and offer insights on its context-specific management.
Resumo:
Weather is a general stochastic influence on the life history of weeds. In contrast, anthropogenic disturbance (e.g. land use) is an important deterministic influence on weed demography. Our aim with this study was to investigate the relative contributions of land use and weather on the demography of Lantana camara (lantana), a weed of agricultural and natural habitats, based on the intensive monitoring of lantana populations under three land uses (viz. farm[pasture], and burnt and grazed forests) in subtropical Australia. Lantana populations were growing vigorously across all land uses (asymptotic population growth rate, λ > 3). Examination of historical demography using retrospective perturbation analyses showed that weather was a strong influence on lantana demography with the transition from an El Niño (2008–09) to a La Niña (2009–10) year having a strong positive effect on population growth rate. This effect was most marked at the grazed site, and to a lesser extent at the burnt site, with seedling-to-juvenile and juvenile-to-adult transitions contributing most to these effects. This is likely the result of burning and grazing having eliminated/reduced interspecific competition at these sites. Prospective perturbation analyses revealed that λ was most sensitive to proportionate changes in growth transitions, followed by fecundity and survival transitions. Examination of context-specific patterns in elasticity revealed that growth and fecundity transitions are likely to be the more critical vital rates to reduce λ in wet years at the burnt and grazed forest sites, compared to the farm/pasture site. Management of lantana may need to limit the transition of juveniles into the adult stages, especially in sites where lantana is free from competition (e.g. in the presence of fire or grazing), and this particularly needs to be achieved in wet years. Collectively, these results shed light on aspects of spatial and temporal variation in the demography of lantana, and offer insights on its context-specific management.
Resumo:
Grazing for Healthy Coastal Wetlands has been developed to provide graziers, landowners and extension officers with information on managing grazing in and around Queensland’s coastal wetlands to maintain healthy coastal wetlands and productive grazing enterprises. It provides practical advice on how grazing and associated land management practices can be implemented to support the long-term health of coastal wetlands whilst maintaining production. The guidelines have been compiled from published literature, grazier knowledge, wetlands managers and the experience of extension and natural resource management professionals. They reflect the current knowledge of suitable management practices for coastal wetlands. They are designed to complement and be considered in conjunction with existing information resources including the EDGEnetwork Grazing Land Management series and best management practice guidelines from regional Natural Resource Management (NRM) groups. While the recommendations apply broadly to Queensland’s coastal wetlands, regional, catchment and landscape-scale variations in wetland characteristics and the objectives of the individual grazing enterprise should be taken into account in planning and deciding management actions for wetlands. An individual grazing property may even have a range of wetland types with different management needs and objectives which should be identified during whole of property planning. Specific land and wetland management advice should also be sought from local grazing extension officers and NRM professionals.
Resumo:
Bellyache bush (Jatropha gossypifolia L.) is an invasive shrub that adversely impacts agricultural and natural systems of northern Australia. While several techniques are available to control bellyache bush, depletion of soil seed banks is central to its management. A 10-year study determined the persistence of intact and ant-discarded bellyache bush seeds buried in shade cloth packets at six depths (ranging from 0 to 40 cm) under both natural rainfall and rainfall-excluded conditions. A second study monitored changes in seedling emergence over time, to provide an indication of the natural rate of seed bank depletion at two sites (rocky and heavy clay) following the physical removal of all bellyache bush plants. Persistence of seed in the burial trial varied depending on seed type, rainfall conditions and burial depth. No viable seeds of bellyache bush remained after 72 months irrespective of seed type under natural rainfall conditions. When rainfall was excluded seeds persisted for much longer, with a small portion (0.4%) of ant-discarded seeds still viable after 120 months. Seed persistence was prolonged (> 96 months to decline to < 1% viability) at all burial depths under rainfall-excluded conditions. In contrast, under natural rainfall, surface located seeds took twice as long (70 months) to decline to 1% viability compared with buried seeds (35 months). No seedling emergence was observed after 58 months and 36 months at the rocky and heavy clay soil sites, respectively. These results suggest that the required duration of control programs on bellyache bush may vary due to the effect of biotic and abiotic factors on persistence of soil seed banks.
Resumo:
The economic analysis is based on the A, B, C and D management practice framework for water quality improvement developed in 2007/2008 by the respective natural resource management region. The Mackay Whitsunday ABCD management framework for sugarcane management practices was published in 2009 by the Department of Primary Industries & Fisheries (DPI&F), following the original version that was published in the Water Quality Improvement Plan: final report for Mackay Whitsunday region (2008).
Resumo:
The economic analysis is based on the A, B, C and D management practice framework for water quality improvement developed in 2007/2008 by the respective natural resource management region. This document focuses on the economic implications of these management practices in the Burdekin Delta region. A review of the management practices is currently being undertaken to clarify some issues and incorporate new knowledge since the earlier version of the framework. However, this updated version is not yet complete and so the Paddock to Reef project has used the most current available version of the framework for the modelling and economics.
Resumo:
Concerns about excessive sediment loads entering the Great Barrier Reef (GBR) lagoon in Australia have led to a focus on improving ground cover in grazing lands. Ground cover has been identified as an important factor in reducing sediment loads, but improving ground cover has been difficult for reef stakeholders in major catchments of the GBR. To provide better information an optimising linear programming model based on paddock scale information in conjunction with land type mapping was developed for the Fitzroy, the largest of the GBR catchments. This identifies at a catchment scale which land types allow the most sediment reduction to be achieved at least cost. The results suggest that from the five land types modelled, the lower productivity land types present the cheapest option for sediment reductions. The study allows more informed decision making for natural resource management organisations to target investments. The analysis highlights the importance of efficient allocation of natural resource management funds in achieving sediment reductions through targeted land type investments. © 2012.
Resumo:
The paper revisits estimates of cost/benefit for eradication in Australia provided in 2001 which were based largely on information about a US ecosystem. The study had two major components; spread modelling using a cellular automation model provided by Joe Scanlan and an impact analysis undertaken by the remaining authors. The revised figures provided in this study increased the damage estimate from $2.8 billion to $45 billion and the benefit-cost ratio of eradication efforts improved from 25:1 to 390:1.