124 resultados para Horticulture
Resumo:
The Australian Sweetpotato Growers Association partnered researchers from Agri-Science Queensland (with co-funding from Horticulture Australia Limited) to identify new, high performing sweetpotato cultivars with diverse colours and tastes. The project evaluated a mix of purple, red, orange and white skin and flesh, tailored for Australian growers and consumers. Australia's sweetpotato market currently relies on one gold cultivar for 90% of national production. Major retailers were requesting a reliable supply of quality sweetpotatoes in emerging categories such as red or white skin or purple flesh. To identify suitable cultivars, over 40 new sweetpotato cultivars were virus tested, and extensively evaluated in multiple experiments in Queensland and northern New South Wales. Larger-scale plantings by growers, using standard agronomy, provided additional performance feedback under commercial conditions. In partnership with growers and wholesalers, cultivars were evaluated in field and laboratory for desired characteristics such as shape, size range, skin and flesh colour, estimates of productivity and suitability for commercial production, cooking characteristics and taste. New high performing gold cultivars had better soil insect and nematode tolerance than the current cultivars. The new colours offered diverse health-related opportunities for consumers, more anthocyanins in purple-fleshed cultivars; higher beta carotene content in new gold fleshed cultivars; and potentially lower GI in white-fleshed cultivars. To enhance adoption, the industry/research partnership will tailor agronomic guidelines to maximise on-farm performance and identify niche marketing pathways for each of the cultivars. Increased consumption of this versatile vegetable will drive sweetpotato industry development and expansion into the future.
Resumo:
A key driver of Australian sweetpotato productivity improvements and consumer demand has been industry adoption of disease-free planting material systems. On a farm isolated from main Australian sweetpotato areas, virus-free germplasm is annually multiplied, with subsequent 'pathogen-tested' (PT) sweetpotato roots shipped to commercial Australian sweetpotato growers. They in turn plant their PT roots into specially designated plant beds, commencing in late winter. From these beds, they cut sprouts as the basis for their commercial fields. Along with other intense agronomic practices, this system enables Australian producers to achieve worldRSQUOs highest commercial yields (per hectare) of premium sweetpotatoes. Their industry organisation, ASPG (Australian Sweetpotato Growers Inc.), has identified productivity of mother plant beds as a key driver of crop performance. Growers and scientists are currently collaborating to investigate issues such as catastrophic plant beds losses; optimisation of irrigation and nutrient addition; rapidity and uniformity of initial plant bed harvests; optimal plant bed harvest techniques; virus re-infection of plant beds; and practical longevity of plant beds. A survey of 50 sweetpotato growers in Queensland and New South Wales identified a substantial diversity in current plant bed systems, apparently influenced by growing district, scale of operation, time of planting, and machinery/labour availability. Growers identified key areas for plant bed research as: optimising the size and grading specifications of PT roots supplied for the plant beds; change in sprout density, vigour and performance through sequential cuttings of the plant bed; optimal height above ground level to cut sprouts to maximise commercial crop and plant bed performance; and use of structures and soil amendments in plant bed systems. Our ongoing multi-disciplinary research program integrates detailed agronomic experiments, grower adaptive learning sites, product quality and consumer research, to enhance industry capacity for inspired innovation and commercial, sustainable practice change.
Resumo:
Lenticel discolouration (LD) is a common disorder of mango fruit around the world. It results in poor appearance and disappointment of consumers. LD is exacerbated by treatment of mango fruit with gamma irradiation for insect disinfestation. The issue is problematic on the relatively new mango cultivar 'B74' and may represent an oxidative browning process. With a view to reducing irradiationinduced LD on 'B74', postharvest wax (one and three layers; 75% carnauba wax) and antioxidant (100 mM ascorbic acid, 100 mM calcium chloride, 10, 50 and 100 mM calcium ascorbate) dip treatments were investigated. Treatment of green mature fruit with three layers of wax prior to exposure to 557 Gy gamma irradiation reduced LD by 40% relative to the non-waxed control. However, the fruit failed to ripen properly as evidenced by delayed skin colour change, retarded softening and increased skin browning as compared to the controls and fruit coated with one layer of wax. Treatment with one layer of wax did not reduce LD. Mechanistically, the responses suggest that air exchange plays a pivotal role in LD. A lowered oxygen concentration in the lenticels may reduce the disorder after irradiation treatment. Postharvest treatments with the various antioxidants failed to reduce LD. Rather, all antioxidant treatments at the test concentrations, except calcium chloride, significantly increased skin browning.
Resumo:
Two field experiments were carried out in Taveuni, Fiji to study the effects of mucuna (Mucuna pruriens) and grass fallow systems at 6 and 12 month durations on changes in soil properties (Experiment 1) and taro yields (Experiment 2). Biomass accumulation of mucuna fallow crop was significantly higher (P<0.05) than grass fallow crop at both 6 and 12 month durations. The longer fallow duration resulted in higher (P<0.05) total soil organic carbon, total soil nitrogen and earthworm numbers regardless of fallow type. Weed suppression in taro grown under mucuna was significantly greater (P<0.05) than under natural grass fallow. Taro grown under mucuna fallow significantly outyielded taro grown under grass fallow (11.8 vs. 8.8 t ha-1). Also, the gross margin of taro grown under mucuna fallow was 52% higher than that of taro grown under grass fallow. © ISHS.