163 resultados para rainfall


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Swan’s Lagoon, which is 125 km south-south-west of Townsville, was purchased by the Queensland Government as a beef cattle research station in 1961. It is situated within the seasonally-dry tropical spear grass region of North Queensland. The station was expanded from 80 km2 to 340 km2 by purchase of the adjoining Expedition block in 1978. The first advisory committee formed and initiated research in 1961. The median annual rainfall of 708 mm (28 inches) is highly variable, with over 80% usually falling in December–April. Annual evaporation is 2.03 metres. The 60% of useable area is mostly flat with low fertility duplex soils, of which more than 50% is phosphorus deficient. Natural spear grass-based pastures predominate over the station. Swan’s Lagoon research has contributed to understanding the biology of many aspects of beef production for northern Australia. Research outcomes have provided options to deal with the region’s primary challenges of weaning rates averaging less than 60%, annual growth rates averaging as little as 100 kg, high mortality rates and high management costs. All these relate to the region’s variable and highly seasonal rainfall—challenges that add to insect-borne viruses, ticks, buffalo fly and internal parasites. As well as the vast amount of practical beef production science produced at Swan’s Lagoon, generations of staff have been trained there to support beef producers throughout Queensland and northern Australia to increase their business efficiency. The Queensland Government has provided most of the funds for staffing and operations. Strong beef industry support is reflected in project funding from meat industry levies, managed by Meat and Livestock Australia (MLA) and its predecessors. MLA has consistently provided the majority of operational research funding since the first grant for ‘Studies of management practices, adaption of different breeds and strains to tropical environments, and studies on tick survival and resistance’ in 1962–63. A large number of other agencies and commercial companies have also supported research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a large gap between the refined approaches to characterise genotypes and the common use of location and season as a coarse surrogate for environmental characterisation of breeding trials. As a framework for breeding, the aim of this paper is quantifying the spatial and temporal patterns of thermal and water stress for field pea in Australia. We compiled a dataset for yield of the cv. Kaspa measured in 185 environments, and investigated the associations between yield and seasonal patterns of actual temperature and modelled water stress. Correlations between yield and temperature indicated two distinct stages. In the first stage, during crop establishment and canopy expansion before flowering, yield was positively associated with minimum temperature. Mean minimum temperature below similar to 7 degrees C suggests that crops were under suboptimal temperature for both canopy expansion and radiation-use efficiency during a significant part of this early growth period. In the second stage, during critical reproductive phases, grain yield was negatively associated with maximum temperature over 25 degrees C. Correlations between yield and modelled water supply/demand ratio showed a consistent pattern with three phases: no correlation at early stages of the growth cycle, a progressive increase in the association that peaked as the crop approached the flowering window, and a progressive decline at later reproductive stages. Using long-term weather records (1957-2010) and modelled water stress for 104 locations, we identified three major patterns of water deficit nation wide. Environment type 1 (ET1) represents the most favourable condition, with no stress during most of the pre-flowering phase and gradual development of mild stress after flowering. Type 2 is characterised by increasing water deficit between 400 degree-days before flowering and 200 degree-days after flowering and rainfall that relieves stress late in the season. Type 3 represents the more stressful condition with increasing water deficit between 400 degree-days before flowering and maturity. Across Australia, the frequency of occurrence was 24% for ET1, 32% for ET2 and 43% for ET3, highlighting the dominance of the most stressful condition. Actual yield averaged 2.2 t/ha for ET1, 1.9 t/ha for ET2 and 1.4 t/ha for ET3, and the frequency of each pattern varied substantially among locations. Shifting from a nominal (i.e. location and season) to a quantitative (i.e. stress type) characterisation of environments could help improving breeding efficiency of field pea in Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report evaluates the wood and veneer properties of plantation-grown spotted gum (Corymbia citriodora subsp. variegata, or CCV) and Dunn's white gum (Eucalyptus dunnii), grown at different stockings, in thinning trials near Ellangowan in north-east New South Wales (mean annual rainfall 1050 mm) and Kingaroy in south-east Queensland (mean annual rainfall 873 mm). Thinning trials were established at age seven years. Both species showed a significant increase in stem diameter growth of the dominant trees in response to thinning. At age 10 years, trees from the unthinned (950–1270 stems ha-1) and 300 stems ha-1 treatments were selected for veneering. Five dominant trees were felled from each combination of species x sites x thinning treatment. Diameter at breast height over bark of the selected trees ranged from 20 cm to 27 cm at Ellangowan, and 19 cm to 26 cm at Kingaroy. From each tree, 1.5 m long billets were removed at two positions: a butt billet from 0.3–1.8 m above ground and a top billet from approximately 5.5–7.0 m. Log end splitting was assessed 24 hours after harvesting and again after steaming, approximately four days after harvesting. Disks from just above both billets were collected for assessment of wood properties. Billets were peeled on a spindleless veneer lathe to produce a full veneer ribbon with a target green thickness of 2.8 to 3.0 mm. The 1.55 m wide (tangential dimension) veneer sheets were dried and graded according to AS/NZ Standard 2269:2008, which describes four veneer grades. Veneer samples taken along the length of the veneer ribbon, at regular intervals of 1.55 m, were tested for stiffness, shrinkage and density. Veneer length measurements were used to calculate the radial distance of each sample from the central axis of the billet. Overall veneer gross recoveries ranged from 50% to 70%. They were significantly lower at the Kingaroy site, for both species. The veneer recoveries achieved were 2–3 times higher than typical green off saw recoveries from small plantation hardwood logs of similar diameter. Most of the veneer recovered was classified as D-grade. CCV trees from the Ellangowan site yielded up to 38% of the better C-grade and higher grade veneers. The main limiting factors that prevented veneer from meeting higher grades were the presence of kino defects and encased knots. Splits in E. dunnii veneer also contributed to reduced grade quality. Log end splits were higher for E. dunnii than for CCV, and logs from Ellangowan exhibited more severe splitting. Split index was generally higher for top than for butt billets. Split index was strongly correlated with the average veneer grade from corresponding billets. The Ellangowan site, where rainfall was higher and trees grew faster, yielded significantly denser and stiffer veneers than did the drier sites near Kingaroy, where tree growth was slower. The difference was more pronounced for E. dunnii than for CCV. Differences in measured wood properties between thinned and unthinned treatments were generally small and not significant. On average, 10% of billet volume was lost during the peeling rounding-up process. Much of the wood laid down following thinning was removed during rounding-up, meaning the effect of thinning on veneer properties could not be effectively assessed. CCV was confirmed as having high veneer density and very good veneer stiffness, exceeding 15 GPa, making it very suitable for structural products. E. dunnii also demonstrated good potential as a useful structural plywood resource, achieving stiffness above 10 GPa. Veneer stiffness and density in CCV increased from pith to bark at both sites, while for E. dunnii there was a radial increase in these properties at the Ellangowan site only. At the drier Kingaroy site, veneer stiffness and density declined from mid-radius to the log periphery. This may be associated with prolonged drought from 2005 to 2009, corresponding to the later years of tree growth at the Kingaroy site. CCV appeared to be less sensitive to drought conditions. Standing tree acoustic velocity, determined by the Fakopp time-of-flight method, provided a reliable prediction of average veneer stiffness for both species (R2=0.78 for CCV and R2=0.90 for E. dunnii) suggesting that the Fakopp method may be a useful indicator of tree and stand quality, in terms of veneer stiffness in standing trees.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small spindleless veneer lathe technology was used to produce veneer sheets as an alternative processing option to optimise the use of small log plantation resource. Thinned (300 spha) and unthinned control (1000 spha) plantings of 10.5-year-old Corymbia citriodora ssp. variegata (CCV) and E. dunnii (Dunn’s white gum) grown in two contrasting sites from climatic regions with large annual rainfall differences were studied. Overall veneer gross recoveries ranged from 50% to 70%, which were up to 3 times higher than typical sawn green-off saw recoveries from small plantation hardwood logs of similar diameter. Major limiting factors preventing veneer from meeting higher grades were the presence of kino defects and encased knots. Splits in E. dunnii veneer also contributed to reduced grade quality. Differences between two thinning treatments for veneer properties and grade recovery were generally small. There was significant evidence of site and species differences on veneer quality. The good quality site with higher rainfall in northern New South Wales produced denser and stiffer veneers with higher grade recoveries. CCV is a superior structural veneer species with high wood density and hardness as well as very good veneer stiffness exceeding 15,000 MPa but Dunn’s white gum has also demonstrated good potential as a useful structural plywood resource. Results indicate that relatively high veneer recoveries were achieved for the sub-tropical plantation hardwoods combined with very superior mechanical properties which suggest that veneer production have suitable attributes for a range of engineered wood products including plywood and laminated veneer lumber.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-Technical Summary Seafood CRC Project 2009/774. Harvest strategy evaluations and co-management for the Moreton Bay Trawl Fishery Principal Investigator: Dr Tony Courtney, Principal Fisheries Biologist Fisheries and Aquaculture, Agri-Science Queensland Department of Agriculture, Fisheries and Forestry Level B1, Ecosciences Precinct, Joe Baker St, Dutton Park, Queensland 4102 Email: tony.courtney@daff.qld.gov.au Project objectives: 1. Review the literature and data (i.e., economic, biological and logbook) relevant to the Moreton Bay trawl fishery. 2. Identify and prioritise management objectives for the Moreton Bay trawl fishery, as identified by the trawl fishers. 3. Undertake an economic analysis of Moreton Bay trawl fishery. 4. Quantify long-term changes to fishing power for the Moreton Bay trawl fishery. 5. Assess priority harvest strategies identified in 2 (above). Present results to, and discuss results with, Moreton Bay Seafood Industry Association (MBSIA), fishers and Fisheries Queensland. Note: Additional, specific objectives for 2 (above) were developed by fishers and the MBSIA after commencement of the project. These are presented in detail in section 5 (below). The project was an initiative of the MBSIA, primarily in response to falling profitability in the Moreton Bay prawn trawl fishery. The analyses were undertaken by a consortium of DAFF, CSIRO and University of Queensland researchers. This report adopted the Australian Standard Fish Names (http://www.fishnames.com.au/). Trends in catch and effort The Moreton Bay otter trawl fishery is a multispecies fishery, with the majority of the catch composed of Greasyback Prawns (Metapenaeus bennettae), Brown Tiger Prawns (Penaeus esculentus), Eastern King Prawns (Melicertus plebejus), squid (Uroteuthis spp., Sepioteuthis spp.), Banana Prawns (Fenneropenaeus merguiensis), Endeavour Prawns (Metapenaeus ensis, Metapenaeus endeavouri) and Moreton Bay bugs (Thenus parindicus). Other commercially important byproduct includes blue swimmer crabs (Portunus armatus), three-spot crabs (Portunus sanguinolentus), cuttlefish (Sepia spp.) and mantis shrimp (Oratosquilla spp.). Logbook catch and effort data show that total annual reported catch of prawns from the Moreton Bay otter trawl fishery has declined to 315 t in 2008 from a maximum of 901 t in 1990. The number of active licensed vessels participating in the fishery has also declined from 207 in 1991 to 57 in 2010. Similarly, fishing effort has fallen from a peak of 13,312 boat-days in 1999 to 3817 boat-days in 2008 – a 71% reduction. The declines in catch and effort are largely attributed to reduced profitability in the fishery due to increased operational costs and depressed prawn prices. The low prawn prices appear to be attributed to Australian aquacultured prawns and imported aquacultured vannamei prawns, displacing the markets for trawl-caught prawns, especially small species such as Greasyback Prawns which traditionally dominated landings in Moreton Bay. In recent years, the relatively high Australian dollar has resulted in reduced exports of Australian wild-caught prawns. This has increased supply on the domestic market which has also suppressed price increases. Since 2002, Brown Tiger Prawns have dominated annual reported landings in the Moreton Bay fishery. While total catch and effort in the bay have declined to historically low levels, the annual catch and catch rates of Brown Tiger Prawns have been at record highs in recent years. This appears to be at least partially attributed to the tiger prawn stock having recovered from excessive effort in previous decades. The total annual value of the Moreton Bay trawl fishery catch, including byproduct, is about $5 million, of which Brown Tiger Prawns account for about $2 million. Eastern King Prawns make up about 10% of the catch and are mainly caught in the bay from October to December as they migrate to offshore waters outside the bay where they contribute to a large mono-specific trawl fishery. Some of the Eastern King Prawns harvested in Moreton Bay may be growth overfished (i.e., caught below the size required to maximise yield or value), although the optimum size-at-capture was not determined in this study. Banana Prawns typically make up about 5% of the catch, but can exceed 20%, particularly following heavy rainfall. Economic analysis of the fishery From the economic survey, cash profits were, on average, positive for both fleet segments in both years of the survey. However, after the opportunity cost of capital and depreciation were taken into account, the residual owner-operator income was relatively low, and substantially lower than the average share of revenue paid to employed skippers. Consequently, owner-operators were earning less than their opportunity cost of their labour, suggesting that the fleets were economically unviable in the longer term. The M2 licensed fleet were, on average, earning similar boat cash profits as the T1/M1 fleet, although after the higher capital costs were accounted for the T1/M1 boats were earning substantially lower returns to owner-operator labour. The mean technical efficiency for the fleet as a whole was estimated to be 0.67. That is, on average, the boats were only catching 67 per cent of what was possible given their level of inputs (hours fished and hull units). Almost one-quarter of observations had efficiency scores above 0.8, suggesting a substantial proportion of the fleet are relatively efficient, but some are also relatively inefficient. Both fleets had similar efficiency distributions, with median technical efficiency score of 0.71 and 0.67 for the M2 and T1/M1 boats respectively. These scores are reasonably consistent with other studies of prawn trawl fleets in Australia, although higher average efficiency scores were found in the NSW prawn trawl fleet. From the inefficiency model, several factors were found to significantly influence vessel efficiency. These included the number of years of experience as skipper, the number of generations that the skipper’s family had been fishing and the number of years schooling. Skippers with more schooling were significantly more efficient than skippers with lower levels of schooling, consistent with other studies. Skippers who had been fishing longer were, in fact, less efficient than newer skippers. However, this was mitigated in the case of skippers whose family had been involved in fishing for several generations, consistent with other studies and suggesting that skill was passed through by families over successive generations. Both the linear and log-linear regression models of total fishing effort against the marginal profit per hour performed reasonably well, explaining between 70 and 84 per cent of the variation in fishing effort. As the models had different dependent variables (one logged and the other not logged) this is not a good basis for model choice. A better comparator is the square root of the mean square error (SMSE) expressed as a percentage of the mean total effort. On this criterion, both models performed very similarly. The linear model suggests that each additional dollar of average profits per hour in the fishery increases total effort by around 26 hours each month. From the log linear model, each percentage increase in profits per hour increases total fishing effort by 0.13 per cent. Both models indicate that economic performance is a key driver of fishing effort in the fishery. The effect of removing the boat-replacement policy is to increase individual vessel profitability, catch and effort, but the overall increase in catch is less than that removed by the boats that must exit the fishery. That is, the smaller fleet (in terms of boat numbers) is more profitable but the overall catch is not expected to be greater than before. This assumes, however, that active boats are removed, and that these were also taking an average level of catch. If inactive boats are removed, then catch of the remaining group as a whole could increase by between 14 and 17 per cent depending on the degree to which costs are reduced with the new boats. This is still substantially lower than historical levels of catch by the fleet. Fishing power analyses An analysis of logbook data from 1988 to 2010, and survey information on fishing gear, was performed to estimate the long-term variation in the fleet’s ability to catch prawns (known as fishing power) and to derive abundance estimates of the three most commercially important prawn species (i.e., Brown Tiger, Eastern King and Greasyback Prawns). Generalised linear models were used to explain the variation in catch as a function of effort (i.e., hours fished per day), vessel and gear characteristics, onboard technologies, population abundance and environmental factors. This analysis estimated that fishing power associated with Brown Tiger and Eastern King Prawns increased over the past 20 years by 10–30% and declined by approximately 10% for greasybacks. The density of tiger prawns was estimated to have almost tripled from around 0.5 kg per hectare in 1988 to 1.5 kg/ha in 2010. The density of Eastern King Prawns was estimated to have fluctuated between 1 and 2 kg per hectare over this time period, without any noticeable overall trend, while Greasyback Prawn densities were estimated to have fluctuated between 2 and 6 kg per hectare, also without any distinctive trend. A model of tiger prawn catches was developed to evaluate the impact of fishing on prawn survival rates in Moreton Bay. The model was fitted to logbook data using the maximum-likelihood method to provide estimates of the natural mortality rate (0.038 and 0.062 per week) and catchability (which can be defined as the proportion of the fished population that is removed by one unit of effort, in this case, estimated to be 2.5 ± 0.4 E-04 per boat-day). This approach provided a method for industry and scientists to develop together a realistic model of the dynamics of the fishery. Several aspects need to be developed further to make this model acceptable to industry. Firstly, there is considerable evidence to suggest that temperature influences prawn catchability. This ecological effect should be incorporated before developing meaningful harvest strategies. Secondly, total effort has to be allocated between each species. Such allocation of effort could be included in the model by estimating several catchability coefficients. Nevertheless, the work presented in this report is a stepping stone towards estimating essential fishery parameters and developing representative mathematical models required to evaluate harvest strategies. Developing a method that allowed an effective discussion between industry, management and scientists took longer than anticipated. As a result, harvest strategy evaluations were preliminary and only included the most valuable species in the fishery, Brown Tiger Prawns. Additional analyses and data collection, including information on catch composition from field sampling, migration rates and recruitment, would improve the modelling. Harvest strategy evaluations As the harvest strategy evaluations are preliminary, the following results should not be adopted for management purposes until more thorough evaluations are performed. The effects, of closing the fishery for one calendar month, on the annual catch and value of Brown Tiger Prawns were investigated. Each of the 12 months (i.e., January to December) was evaluated. The results were compared against historical records to determine the magnitude of gain or loss associated with the closure. Uncertainty regarding the trawl selectivity was addressed using two selectivity curves, one with a weight at 50% selection (S50%) of 7 g, based on research data, and a second with S50% of 14 g, put forward by industry. In both cases, it was concluded that any monthly closure after February would not be beneficial to the industry. The magnitude of the benefit of closing the fishery in either January or February was sensitive to which mesh selectivity curve that was assumed, with greater benefit achieved when the smaller selectivity curve (i.e., S50% = 7 g) was assumed. Using the smaller selectivity (S50% = 7 g), the expected increase in catch value was 10–20% which equates to $200,000 to $400,000 annually, while the larger selectivity curve (S50% = 14 g) suggested catch value would be improved by 5–10%, or $100,000 to $200,000. The harvest strategy evaluations showed that greater benefits, in the order of 30–60% increases in the tiger annual catch value, could have been obtained by closing the fishery early in the year when annual effort levels were high (i.e., > 10,000 boat-days). In recent years, as effort levels have declined (i.e., ~4000 boat-days annually), expected benefits from such closures are more modest. In essence, temporal closures offer greater benefit when fishing mortality rates are high. A spatial analysis of Brown Tiger Prawn catch and effort was also undertaken to obtain a better understanding of the prawn population dynamics. This indicated that, to improve profitability of the fishery, fishers could consider closing the fishery in the period from June to October, which is already a period of low profitability. This would protect the Brown Tiger Prawn spawning stock, increase catch rates of all species in the lucrative pre-Christmas period (November–December), and provide fishers with time to do vessel maintenance, arrange markets for the next season’s harvest, and, if they wish, work at other jobs. The analysis found that the instantaneous rate of total mortality (Z) for the March–June period did not vary significantly over the last two decades. As the Brown Tiger Prawn population in Moreton Bay has clearly increased over this time period, an interesting conclusion is that the instantaneous rate of natural mortality (M) must have increased, suggesting that tiger prawn natural mortality may be density-dependent at this time of year. Mortality rates of tiger prawns for June–October were found to have decreased over the last two decades, which has probably had a positive effect on spawning stocks in the October–November spawning period. Abiotic effects on the prawns The influence of air temperature, rainfall, freshwater flow, the southern oscillation index (SOI) and lunar phase on the catch rates of the four main prawn species were investigated. The analyses were based on over 200,000 daily logbook catch records over 23 years (i.e., 1988–2010). Freshwater flow was more influential than rainfall and SOI, and of the various sources of flow, the Brisbane River has the greatest volume and influence on Moreton Bay prawn catches. A number of time-lags were also considered. Flow in the preceding month prior to catch (i.e., 30 days prior, Logflow1_30) and two months prior (31–60 days prior, Logflow31_60) had strong positive effects on Banana Prawn catch rates. Average air temperature in the preceding 4-6 months (Temp121_180) also had a large positive effect on Banana Prawn catch rates. Flow in the month immediately preceding catch (Logflow1_30) had a strong positive influence on Greasyback Prawn catch rates. Air temperature in the preceding two months prior to catch (Temp1_60) had a large positive effect on Brown Tiger Prawn catch rates. No obvious or marked effects were detected for Eastern King Prawns, although interestingly, catch rates declined with increasing air temperature 4–6 months prior to catch. As most Eastern King Prawn catches in Moreton Bay occur in October to December, the results suggest catch rates decline with increasing winter temperatures. In most cases, the prawn catch rates declined with the waxing lunar phase (high luminance/full moon), and increased with the waning moon (low luminance/new moon). The SOI explains little additional variation in prawn catch rates (~ <2%), although its influence was higher for Banana Prawns. Extrapolating findings of the analyses to long-term climate change effects should be interpreted with caution. That said, the results are consistent with likely increases in abundance in the region for the two tropical species, Banana Prawns and Brown Tiger Prawns, as coastal temperatures rise. Conversely, declines in abundance could be expected for the two temperate species, Greasyback and Eastern King Prawns. Corporate management structures An examination of alternative governance systems was requested by the industry at one of the early meetings, particularly systems that may give them greater autonomy in decision making as well as help improve the marketing of their product. Consequently, a review of alternative management systems was undertaken, with a particular focus on the potential for self-management of small fisheries (small in terms of number of participants) and corporate management. The review looks at systems that have been implemented or proposed for other small fisheries internationally, with a particular focus on self-management as well as the potential benefits and challenges for corporate management. This review also highlighted particular opportunities for the Moreton Bay prawn fishery. Corporate management differs from other co-management and even self-management arrangements in that ‘ownership’ of the fishery is devolved to a company in which fishers and government are shareholders. The company manages the fishery as well as coordinates marketing to ensure that the best prices are received and that the catch taken meets the demands of the market. Coordinated harvesting will also result in increased profits, which are returned to fishers in the form of dividends. Corporate management offers many of the potential benefits of an individual quota system without formally implementing such a system. A corporate management model offers an advantage over a self-management model in that it can coordinate both marketing and management to take advantage of this unique geographical advantage. For such a system to be successful, the fishery needs to be relatively small and self- contained. Small in this sense is in terms of number of operators. The Moreton Bay prawn fishery satisfies these key conditions for a successful self-management and potentially corporate management system. The fishery is small both in terms of number of participants and geography. Unlike other fisheries that have progressed down the self-management route, the key market for the product from the Moreton Bay fishery is right at its doorstep. Corporate management also presents a number of challenges. First, it will require changes in the way fishers operate. In particular, the decision on when to fish and what to catch will be taken away from the individual and decided by the collective. Problems will develop if individuals do not join the corporation but continue to fish and market their own product separately. While this may seem an attractive option to fishers who believe they can do better independently, this is likely to be just a short- term advantage with an overall long-run cost to themselves as well as the rest of the industry. There are also a number of other areas that need further consideration, particularly in relation to the allocation of shares, including who should be allocated shares (e.g. just boat owners or also some employed skippers). Similarly, how harvesting activity is to be allocated by the corporation to the fishers. These are largely issues that cannot be answered without substantial consultation with those likely to be affected, and these groups cannot give these issues serious consideration until the point at which they are likely to become a reality. Given the current structure and complexity of the fishery, it is unlikely that such a management structure will be feasible in the short term. However, the fishery is a prime candidate for such a model, and development of such a management structure in the future should be considered as an option for the longer term.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Development of new agricultural industries in northern Australia is often perceived as a solution to changes in water availability that have occurred within southern Australia as a result of changes to government policy in response to and exacerbated by climate change. This report examines the likely private, social and community costs and benefits associated with the establishment of a cotton industry in the Burdekin. The research undertaken covers three spatial scales by modelling the response of cotton and to climate change at the crop and farm scale and linking this to regional scale modelling of the economy. Modelling crop growth as either a standalone crop or as part of a farm enterprise provides the clearest picture of how yields and water use will be affected under climate change. The alternative to this is to undertake very costly trials in environmental chambers. For this reason it is critical that funding for model development especially for crops being crop in novel environments be seen as a high priority for climate change and adaptation studies. Crop level simulations not only provide information on how the crop responds to climate change, they also illustrate that that these responses are the result of complex interactions and cannot necessarily be derived from the climate information alone. These simulations showed that climate change would lead to decreased cotton yields in 2030 and 2050 without the affect of CO2 fertilisation. Without CO2 fertilisation, yields would be decreased by 3.2% and 17.8%. Including CO2 fertilisation increased yields initially by 5.9%, but these were reduced by 3.6% in 2050. This still represents a major offset and at least ameliorates the impact of climate change on yield. To cope with the decreased in-crop rainfall (4.5% by 2030 and 15.8% in 2050) and an initial increase in evapotranspiration of 2% in 2030 and

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bellyache bush (Jatropha gossypifolia L.) is an invasive shrub that adversely impacts agricultural and natural systems of northern Australia. While several techniques are available to control bellyache bush, depletion of soil seed banks is central to its management. A 10-year study determined the persistence of intact and ant-discarded bellyache bush seeds buried in shade cloth packets at six depths (ranging from 0 to 40 cm) under both natural rainfall and rainfall-excluded conditions. A second study monitored changes in seedling emergence over time, to provide an indication of the natural rate of seed bank depletion at two sites (rocky and heavy clay) following the physical removal of all bellyache bush plants. Persistence of seed in the burial trial varied depending on seed type, rainfall conditions and burial depth. No viable seeds of bellyache bush remained after 72 months irrespective of seed type under natural rainfall conditions. When rainfall was excluded seeds persisted for much longer, with a small portion (0.4%) of ant-discarded seeds still viable after 120 months. Seed persistence was prolonged (> 96 months to decline to < 1% viability) at all burial depths under rainfall-excluded conditions. In contrast, under natural rainfall, surface located seeds took twice as long (70 months) to decline to 1% viability compared with buried seeds (35 months). No seedling emergence was observed after 58 months and 36 months at the rocky and heavy clay soil sites, respectively. These results suggest that the required duration of control programs on bellyache bush may vary due to the effect of biotic and abiotic factors on persistence of soil seed banks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rabbit haemorrhagic disease is a major tool for the management of introduced, wild rabbits in Australia. However, new evidence suggests that rabbits may be developing resistance to the disease. Rabbits sourced from wild populations in central and southeastern Australia, and domestic rabbits for comparison, were experimentally challenged with a low 60 ID50 oral dose of commercially available Czech CAPM 351 virus - the original strain released in Australia. Levels of resistance to infection were generally higher than for unselected domestic rabbits and also differed (0-73% infection rates) between wild populations. Resistance was lower in populations from cooler, wetter regions and also low in arid regions with the highest resistance seen within zones of moderate rainfall. These findings suggest the external influences of non-pathogenic calicivirus in cooler, wetter areas and poor recruitment in arid populations may influence the development rate of resistance in Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lantana camara L. (Verbenaceae) is a weed of great significance in Australia and worldwide, but little is known about connections among components of its life history. We document over a 3-year period, the links between L. camara seed-bank dynamics and its above-ground growth, including size asymmetry in four land-use types (a farm, a hoop pine plantation and two open eucalypt forests) invaded by the weed near Brisbane, Queensland Australia. Seed-bank populations varied appreciably across sites and in response to rainfall and control measures, and they were higher (~1,000 seeds/m2) when annual rainfall was 15-30 % below the long-term yearly average. Fire reduced seed-bank populations but not the proportion germinating (6-8 %). Nearly a quarter of fresh seeds remain germinable after 3 years of soil burial. For small seedlings (<10 cm high), the expected trade-offs in two life-history traits-survival and growth-did not apply; rather the observed positive association between these two traits, coupled with a persistent seed-bank population could contribute to the invasiveness of the plant. Relationships between absolute growth rate and initial plant size (crown volume) were positively linear, suggesting that most populations are still at varying stages of the exponential phase of the sigmoid growth; this trend also suggests that at most sites and despite increasing stand density and limiting environmental resources of light and soil moisture, lantana growth is inversely size asymmetric. From the observed changes in measures of plant size inequality, asymmetric competition appeared limited in all the infestations surveyed. © 2013 Crown Copyright as represented by: Department of Agriculture, Fisheries and Forestry, Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statistical studies of rainfed maize yields in the United States(1) and elsewhere(2) have indicated two clear features: a strong negative yield response to accumulation of temperatures above 30 degrees C (or extreme degree days (EDD)), and a relatively weak response to seasonal rainfall. Here we show that the process-based Agricultural Production Systems Simulator (APSIM) is able to reproduce both of these relationships in the Midwestern United States and provide insight into underlying mechanisms. The predominant effects of EDD in APSIM are associated with increased vapour pressure deficit, which contributes to water stress in two ways: by increasing demand for soil water to sustain a given rate of carbon assimilation, and by reducing future supply of soil water by raising transpiration rates. APSIM computes daily water stress as the ratio of water supply to demand, and during the critical month of July this ratio is three times more responsive to 2 degrees C warming than to a 20% precipitation reduction. The results suggest a relatively minor role for direct heat stress on reproductive organs at present temperatures in this region. Effects of elevated CO2 on transpiration efficiency should reduce yield sensitivity to EDD in the coming decades, but at most by 25%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wheat crops in southeast Queensland (Qld) and northern New South Wales (NSW) were infected with fusarium head blight (FHB)-like symptoms during the 201011 wheat growing season. Wheat crops in this region were surveyed at soft dough or early maturity stage to determine the distribution, severity, aetiology and toxigenicity of FHB. FHB was widespread on bread wheat and durum, and Fusarium graminearum and/or F.pseudograminearum were diagnosed from 42 of the 44 sites using species-specific PCR primers directly on spikelets or from monoconidial cultures obtained from spikelets. Stem base browning due to crown rot (CR) was also evident in some samples from both states. The overall FHB and CR severity was higher for NSW than Qld. Deoxynivalenol (DON) concentration of immature grains was more than 1 mg kg-1 in samples from 11 Qld and 14 NSW sites, but only 13 of 498 mature grain samples sourced from the affected areas had more than 1 mg kg-1 DON. DON concentration in straw also exceeded 1 mg kg-1 in eight Qld and all but one NSW sites but this was not linked to DON concentration of immature grains. The proportion of spikelets with positive diagnosis for F.graminearum and/or F.pseudograminearum and weather-related factors influenced DON levels in immature grains. The average monthly rainfall for AugustNovember during crop anthesis and maturation exceeded the long-term monthly average by 10150%. Weather played a critical role in FHB epidemics for Qld sites but this was not apparent for the NSW sites, as weather was generally favourable at all sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fruit flies require protein for reproductive development and actively feed upon protein sources in the field. Liquid protein baits mixed with insecticide are used routinely to manage pest fruit flies, such as Bactrocera tryoni (Froggatt). However, there are still some gaps in the underpinning science required to improve the efficacy of bait spray technology. The spatial and temporal foraging behaviour of B. tryoni in response to protein was investigated in the field. A series of linked trials using either wild flies in the open field or laboratory-reared flies in field cages and a netted orchard were undertaken using nectarines and guavas. Key questions investigated were the fly's response to protein relative to: height of protein within the canopy, fruiting status of the tree, time of day, season and size of the experimental arena. Canopy height had a significant response on B. tryoni foraging, with more flies foraging on protein in the mid to upper canopy. Fruiting status also had a significant effect on foraging, with most flies responding to protein when applied to fruiting hosts. B. tryoni demonstrated a repeatable diurnal response pattern to protein, with the peak response being between 12:0016:00 h. Season showed significant but unpredictable effects on fruit fly response to protein in the subtropical environment where the work was undertaken. Relative humidity, but not temperature or rainfall, was positively correlated with protein response. The number of B. tryoni responding to protein decreased dramatically as the spatial scale increased from field cage through to the open field. Based on these results, it is recommend that, to be most effective, protein bait sprays should be applied to the mid to upper canopies of fruiting hosts. Overall, the results show that the protein used, an industry standard, has very low attractancy to B. tryoni and that further work is urgently needed to develop more volatile protein baits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A suite of co-occurring eriophyid mite species are significant pests in subtropical Australia, causing severe discolouration, blistering, necrosis and leaf loss to one of the region's most important hardwood species, Corymbia citriodora subsp. variegata (F. Muell.) K. D. Hill & L. A. S. Johnson (Myrtaceae). In this study, we examined mite population dynamics and leaf damage over a 1-year period in a commercial plantation of C. citriodora subsp. variegata. Our aims were to link the incidence and severity of mite damage, and mite numbers, to leaf physical traits (moisture content and specific leaf weight (SLW)); to identify any seasonal changes in leaf surface occupancy (upper vs. lower lamina); and host tree canopy strata (upper, mid or lower canopy). We compared population trends with site rainfall, temperature and humidity. We also examined physical and anatomical changes in leaf tissue in response to mite infestation to characterize the plants' physiological reaction to feeding, and how this might affect photosynthesis. Our main findings included positive correlations with leaf moisture content and mite numbers and with mite numbers and damage severity. Wet and dry leaf mass and SLW were greater for damaged tissue than undamaged tissue. Mites were distributed equally throughout the canopy and on both leaf surfaces. No relationships with climatic factors were found. Damage symptoms occurred equally and were exactly mirrored on both leaf surfaces. Mite infestation increased the overall epidermal thickness and the number and size of epidermal cells and was also associated with a rapid loss of chloroplasts from mesophyll cells beneath damage sites. The integrity of the stomatal complex was severely compromised in damaged tissues. These histological changes suggest that damage by these mites will negatively impact the photosynthetic efficiency of susceptible plantation species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Western white gum produces a hard, heavy, durable and attractive timber that is potentially suitable for construction, appearance products and round timber products. It is no longer harvested from natural stands but is a productive plantation tree in Queensland. It is highly suitable for low rainfall areas in northern Australia and is frost and drought hardy, has good form and reasonable growth rates. It is generally unknown in either national or international markets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inter-annual rainfall variability is a major challenge to sustainable and productive grazing management on rangelands. In Australia, rainfall variability is particularly pronounced and failure to manage appropriately leads to major economic loss and environmental degradation. Recommended strategies to manage sustainably include stocking at long-term carrying capacity (LTCC) or varying stock numbers with forage availability. These strategies are conceptually simple but difficult to implement, given the scale and spatial heterogeneity of grazing properties and the uncertainty of the climate. This paper presents learnings and insights from northern Australia gained from research and modelling on managing for rainfall variability. A method to objectively estimate LTCC in large, heterogeneous paddocks is discussed, and guidelines and tools to tactically adjust stocking rates are presented. The possible use of seasonal climate forecasts (SCF) in management is also considered. Results from a 13-year grazing trial in Queensland show that constant stocking at LTCC was far more profitable and largely maintained land condition compared with heavy stocking (HSR). Variable stocking (VAR) with or without the use of SCF was marginally more profitable, but income variability was greater and land condition poorer than constant stocking at LTCC. Two commercial scale trials in the Northern Territory with breeder cows highlighted the practical difficulties of variable stocking and provided evidence that heavier pasture utilisation rates depress reproductive performance. Simulation modelling across a range of regions in northern Australia also showed a decline in resource condition and profitability under heavy stocking rates. Modelling further suggested that the relative value of variable v. constant stocking depends on stocking rate and land condition. Importantly, variable stocking may possibly allow slightly higher stocking rates without pasture degradation. Enterprise-level simulations run for breeder herds nevertheless show that poor economic performance can occur under constant stocking and even under variable stocking in some circumstances. Modelling and research results both suggest that a form of constrained flexible stocking should be applied to manage for climate variability. Active adaptive management and research will be required as future climate changes make managing for rainfall variability increasingly challenging.