145 resultados para Unreliable Production Lines


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An understanding of processes regulating wheat floret and grain number at higher temperatures is required to better exploit genetic variation. In this study we tested the hypothesis that at higher temperatures, a reduction in floret fertility is associated with a decrease in soluble sugars and this response is exacerbated in genotypes low in water soluble carbohydrates (WSC). Four recombinant inbred lines contrasting for stem WSC were grown at 20/10 degrees C and 11 h photoperiod until terminal spikelet, and then continued in a factorial combination of 20/10 degrees C or 28/14 degrees C with 11 h or 16 h photoperiod until anthesis. Across environments, High WSC lines had more grains per spike associated with more florets per spike. The number of fertile florets was associated with spike biomass at booting and, by extension, with glucose amount, both higher in High WSC lines. At booting, High WSC lines had higher fixed C-13 and higher levels of expression of genes involved in photosynthesis and sucrose transport and lower in sucrose degradation compared with Low WSC lines. At higher temperature, the intrinsic rate of floret development rate before booting was slower in High WSC lines. Grain set declined with the intrinsic rate of floret development before booting, with an advantage for High WSC lines at 28/14 degrees C and 16 h. Genotypic and environmental action on floret fertility and grain set was summarised in a model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Historical stocking methods of continuous, season-long grazing of pastures with little account of growing conditions have caused some degradation within grazed landscapes in northern Australia. Alternative stocking methods have been implemented to address this degradation and raise the productivity and profitability of the principal livestock, cattle. Because information comparing stocking methods is limited, an evaluation was undertaken to quantify the effects of stocking methods on pastures, soils and grazing capacity. The approach was to monitor existing stocking methods on nine commercial beef properties in north and south Queensland. Environments included native and exotic pastures and eucalypt (lighter soil) and brigalow (heavier soil) land types. Breeding and growing cattle were grazed under each method. The owners/managers, formally trained in pasture and grazing management, made all management decisions affecting the study sites. Three stocking methods were compared: continuous (with rest), extensive rotation and intensive rotation (commonly referred to as 'cell grazing'). There were two or three stocking methods examined on each property: in total 21 methods (seven continuous, six extensive rotations and eight intensive rotations) were monitored over 74 paddocks, between 2006 and 2009. Pasture and soil surface measurements were made in the autumns of 2006, 2007 and 2009, while the paddock grazing was analysed from property records for the period from 2006 to 2009. The first 2 years had drought conditions (rainfall average 3.4 decile) but were followed by 2 years of above-average rainfall. There were no consistent differences between stocking methods across all sites over the 4 years for herbage mass, plant species composition, total and litter cover, or landscape function analysis (LFA) indices. There were large responses to rainfall in the last 2 years with mean herbage mass in the autumn increasing from 1970 kg DM ha(-1) in 2006-07 to 3830 kg DM ha(-1) in 2009. Over the same period, ground and litter cover and LFA indices increased. Across all sites and 4 years, mean grazing capacity was similar for the three stocking methods. There were, however, significant differences in grazing capacity between stocking methods at four sites but these differences were not consistent between stocking methods or sites. Both the continuous and intensive rotation methods supported the highest average annual grazing capacity at different sites. The results suggest that cattle producers can obtain similar ecological responses and carry similar numbers of livestock under any of the three stocking methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significant interactions have been demonstrated between production factors and postharvest quality of fresh fruit. Accordingly, there is an attendant need for adaptive postharvest actions to modulate preharvest effects. The most significant preharvest effects appear to be mediated through mineral nutrition influences on the physical characteristics of fruit. Examples of specific influencers include fertilisers, water availability, rootstock, and crop load effects on fruit quality attributes such as skin colour, susceptibility to diseases and physiological disorders, and fruit nutritional composition. Also, rainfall before and during harvest can markedly affect fruit susceptibility to skin blemishes, physical damage, and diseases. Knowledge of preharvest-postharvest interactions can help determine the basis for variability in postharvest performance and thereby allow refinement of postharvest practices to minimise quality loss after harvest. This knowledge can be utilised in predictive management systems. Such systems can benefit from characterisation of fruit nutritional status, particularly minerals, several months before and/or at harvest to allow informed decisions on postharvest handling and marketing options. Other examples of proactive management practices include adjusting harvesting and packing systems to account for rainfall effects before and/or during harvest. Improved understanding of preharvest-postharvest interactions is contributing to the delivery of consistently higher quality of fruit to consumers. This paper focuses on the state of knowledge for sub-tropical and tropical fruits, in particular avocado and mango.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of plastic high tunnels on the performance of two strawberry (Fragaria ×ananassa) cultivars (Festival and Rubygem) and two breeding lines was studied in southeastern Queensland, Australia, over 2 years. Production in this area is affected by rain, with direct damage to the fruit and the development of fruit disease before harvest. The main objective of the study was to determine whether plants growing under tunnels had less rain damage, a lower incidence of disease, and higher yields than plants growing outdoors. Plants growing under the tunnels or outdoors had at best only small differences in leaf, crown, root, and flower and immature fruit dry weight. These responses were associated with relatively similar temperatures and relative humidities in the two growing environments. Marketable yields were 38% higher under the tunnels compared with yields outdoors in year 1, and 24% higher in year 2, mainly due to less rain damage. There were only small differences in the incidences of grey mold (Botrytis cinerea) and small and misshaped fruit in the plants growing under the tunnels and outdoors. There were also only small differences in postharvest quality, total soluble solids, and titratable acidity between the two environments. These results highlight the potential of plastic high tunnels for strawberry plants growing in subtropical areas that receive significant rainfall during the production season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

* Stay-green is an integrated drought adaptation trait characterized by a distinct green leaf phenotype during grain filling under terminal drought. We used sorghum (Sorghum bicolor), a repository of drought adaptation mechanisms, to elucidate the physiological and genetic mechanisms underpinning stay-green. * Near-isogenic sorghum lines (cv RTx7000) were characterized in a series of field and managed-environment trials (seven experiments and 14 environments) to determine the influence of four individual stay-green (Stg1–4) quantitative trait loci (QTLs) on canopy development, water use and grain yield under post-anthesis drought. * The Stg QTL decreased tillering and the size of upper leaves, which reduced canopy size at anthesis. This reduction in transpirational leaf area conserved soil water before anthesis for use during grain filling. Increased water uptake during grain filling of Stg near-isogenic lines (NILs) relative to RTx7000 resulted in higher post-anthesis biomass production, grain number and yield. Importantly, there was no consistent yield penalty associated with the Stg QTL in the irrigated control. * These results establish a link between the role of the Stg QTL in modifying canopy development and the subsequent impact on crop water use patterns and grain yield under terminal drought.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reviews research coordinated by the Australian Cotton Cooperative Research Centre (CRC) that investigated production issues for irrigated cotton at five targeted sites in tropical northern Australia, north of 21°S from Broome in Western Australia to the Burdekin in Queensland. The biotic and abiotic issues for cotton production were investigated with the aim of defining the potential limitations and, where appropriate, building a sustainable technical foundation for a future industry if it were to follow. Key lessons from the Cotton CRC research effort were: (1) limitations thought to be associated with cotton production in northern Australia can be overcome by developing a deep understanding of biotic and environmental constraints, then tailoring and validating production practices; and (2) transplanting of southern farming practices without consideration of local pest, soil and climatic factors is unlikely to succeed. Two grower guides were published which synthesised the research for new growers into a rational blueprint for sustainable cotton production in each region. In addition to crop production and environmental impact issues, the project identified the following as key elements needed to establish new cropping regions in tropical Australia: rigorous quantification of suitable land and sustainable water yields; support from governments; a long-term funding model for locally based research; the inclusion of traditional owners; and development of human capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grasses, legumes, saltbushes and herbs were evaluated at 6 sites in southern inland Queensland to identify potential pasture and forage plants for use on marginal cropping soils. The region experiences summer heat waves and severe winter frosts. Emphasis was on perennial plants, and native species were included. Seedlings were transplanted into the unfertilized fields in either summer or autumn to suit the growing season of plants, and watered to ensure estab-lishment. Summer-growing grasses were the most successful group, while cool season-growing perennials mostly failed. Summer legumes were disappointing, with Stylosanthes scabra and Indigofera schimperi performing best. Some lines such as I. schimperi and the Eragrostis hybrid cv. Cochise were assessed as potential weeds owing to low animal acceptance. Native Rhynchosia minima grew well at some sites and deserves more study. Cenchrus ciliaris was always easy to establish and produced the highest yields. Persistence of some Digitaria and Bothriochloa species, Eragrostis curvula and Fingerhuthia africana at specific sites was encouraging, but potential weediness needs careful assessment. Standard species were identified to represent the main forage types, such as Austrostipa scabra for cool season-growing grasses, for incorporation into future trials with new genetic materials. The early field testing protocol used should be considered for use elsewhere, if unreliable rainfall poses a high risk of establishment failure from scarce seed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Implications •As kangaroo meat is sourced from native wildlife, conservation of the species is important in developing sustainable meat harvesting. Landholders, conservationists, and commercial meat producers need to work together to achieve this goal. •The production of high quality meat products from field-harvested carcasses can be augmented through a better understanding of the impact that field conditions and carcass handling have on final meat eating quality. •Food safety is also paramount, with measures taken to minimize the impacts of parasitism and microbial contamination. Any breaches of inspection protocols can only serve to undermine consumer confidence and viability of the industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climatic variability in dryland production environments (E) generates variable yield and crop production risks. Optimal combinations of genotype (G) and management (M) depend strongly on E and thus vary among sites and seasons. Traditional crop improvement seeks broadly adapted genotypes to give best average performance under a standard management regime across the entire production region, with some subsequent manipulation of management regionally in response to average local environmental conditions. This process does not search the full spectrum of potential G × M × E combinations forming the adaptation landscape. Here we examine the potential value (relative to the conventional, broad adaptation approach) of exploiting specific adaptation arising from G × M × E. We present an in-silico analysis for sorghum production in Australia using the APSIM sorghum model. Crop design (G × M) is optimised for subsets of locations within the production region (specific adaptation) and is compared with the optimum G across all environments with locally modified M (broad adaptation). We find that geographic subregions that have frequencies of major environment types substantially different from that for the entire production region show greatest advantage for specific adaptation. Although the specific adaptation approach confers yield and production risk advantages at industry scale, even greater benefits should be achievable with better predictors of environment-type likelihood than that conferred by location alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present experiment was conducted to determine the efficiency of microbial protein production in the rumen and intake by cattle fed high-molasses diets. Intake and microbial crude protein (MCP) production were measured along with the concentration of rumen ammonia-nitrogen (N) and volatile fatty acids (VFA), pH and the rate of digestion of roughage in the rumen. Eight Brahman crossbred steers weighing 211 ± 19.3 (± s.d.) kg were used in a double 4 × 4 Latin square design. Steers were allocated to one of four total mixed rations: control (pangola hay only), 25M (25% molasses/urea mix + 75% hay), 50M (50% molasses/urea + 50% hay), and 75M (75% molasses/urea + 25% hay). The production and efficiency of production of MCP (EMCP) of the diet increased quadratically as the level of molasses in the diet increased. The EMCP from the molasses/urea mix was estimated as 166 g MCP/kg digestible organic matter (DOM), a relatively high value. Intake of dry matter (DM) and DOM increased quadratically, reaching a peak when molasses was ~50% (as fed) of the ration. Digestibility of DM increased quadratically and that of neutral detergent fibre decreased linearly with increasing level of molasses in the diet. Molasses inclusion in the diet had no effect on rumen pH, ammonia and VFA concentration in the rumen fluid, plasma urea-N, urine pH or ruminal fractional outflow rate of ytterbium-labelled particles and Cr-EDTA. It was concluded that a diet with a high level of molasses (>50%) and supplemented with adequate N had high EMCP, and that low MCP production was not a factor limiting intake or performance of cattle consuming high-molasses diets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vegetable cropping systems are often characterised by high inputs of nitrogen fertiliser. Elevated emissions of nitrous oxide (N2O) can be expected as a consequence. In order to mitigate N2O emissions from fertilised agricultural fields, the use of nitrification inhibitors, in combination with ammonium based fertilisers, has been promoted. However, no data is currently available on the use of nitrification inhibitors in sub-tropical vegetable systems. A field experiment was conducted to investigate the effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on N2O emissions and yield from broccoli production in sub-tropical Australia. Soil N2O fluxes were monitored continuously (3 h sampling frequency) with fully automated, pneumatically operated measuring chambers linked to a sampling control system and a gas chromatograph. Cumulative N2O emissions over the 5 month observation period amounted to 298 g-N/ha, 324 g-N/ha, 411 g-N/ha and 463 g-N/ha in the conventional fertiliser (CONV), the DMPP treatment (DMPP), the DMMP treatment with a 10% reduced fertiliser rate (DMPP-red) and the zero fertiliser (0N), respectively. The temporal variation of N2O fluxes showed only low emissions over the broccoli cropping phase, but significantly elevated emissions were observed in all treatments following broccoli residues being incorporated into the soil. Overall 70–90% of the total emissions occurred in this 5 weeks fallow phase. There was a significant inhibition effect of DMPP on N2O emissions and soil mineral N content over the broccoli cropping phase where the application of DMPP reduced N2O emissions by 75% compared to the standard practice. However, there was no statistical difference between the treatments during the fallow phase or when the whole season was considered. This study shows that DMPP has the potential to reduce N2O emissions from intensive vegetable systems, but also highlights the importance of post-harvest emissions from incorporated vegetable residues. N2O mitigation strategies in vegetable systems need to target these post-harvest emissions and a better evaluation of the effect of nitrification inhibitors over the fallow phase is needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract The paper evaluates the effect of future climate change (as per the CSIRO Mk3.5 A1FI future climate projection) on cotton yield in Southern Queensland and Northern NSW, eastern Australia by using of the biophysical simulation model APSIM (Agricultural Production Systems sIMulator). The simulations of cotton production show that changes in the influential meteorological parameters caused by climate change would lead to decreased future cotton yields without the effect of CO2 fertilisation. By 2050 the yields would decrease by 17 %. Including the effects of CO2 fertilisation ameliorates the effect of decreased water availability and yields increase by 5.9 % by 2030, but then decrease by 3.6 % in 2050. Importantly, it was necessary to increase irrigation amounts by almost 50 % to maintain adequate soil moisture levels. The effect of CO2 was found to have an important positive impact of the yield in spite of deleterious climate change. This implies that the physiological response of plants to climate change needs to be thoroughly understood to avoid making erroneous projections of yield and potentially stifling investment or increasing risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trials in the Condamine-Balonne basin, Australia, compared 11 promising perennial pasture grass accessions (4 Bothriochloa, 2 Cenchrus, 2 Urochloa and 1 each of Digitaria, Eragrostis and Panicum species) against the best similar commercial cultivars on the basis of ease of establishment from seed, persistence once established, forage yield and ease of seed production. Accessions sown at a site were determined by prior experience with them on a range of soils. High quality seed was relatively easy to produce for both Urochloa species and for Eragrostis curvula CPI 30374 but problematic for the Bothriochloa spp. Once established, all accessions persisted for 3–5 years and most were well grazed, but adequate establishment was sometimes a problem with Panicum stapfianum and Bothriochloa ewartiana. The dry matter yield ratings of the non-commercial lines were similar to those of the commercial equivalents of the same species. While agronomically valuable, none of the promising new grasses was considered worthy of commercialization at this point because their strengths did not warrant the setting up of a seed-production business in competition with current commercial enterprises. Long-standing cultivars such as Gayndah buffel and Nixon sabi grass continued to exhibit their superior pasture qualities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weed management is the major challenge to the success of dry-seeded rice (DSR). A field study was conducted during the dry seasons of 2013 and 2014at the International Rice Research Institute to evaluate the performance of herbicides combined with mechanical weeding in DSR. The lowest weed density and biomass were found in the treatment oxadiazon followed by (fb) fenoxaprop+ethoxysulfuron fb 2,4-D fb mechanical weeding (MW) at 42 days after sowing (DAS). However, this treatment had similar weed density and biomass to the treatments oxadiazon fb bispyribac-sodium fb fenoxaprop+ethoxysulfuron fb 2,4-D,oxadiazon fb bispyribac-sodium fb 2,4-D, and oxadiazon fb MW (28 DAS) fb MW (42 DAS). The highest weed density and biomass were recorded in the treatment oxadiazon fb MW (28 DAS) and oxadiazon fb 2,4-D. Higher grain yield (5.3-5.8tha-1) was produced in the plots that received oxadiazon fb fenoxaprop+ethoxysulfuron fb 2,4-D fb MW(42 DAS) and oxadiazon fb bispyribac-sodium fb fenoxaprop+ethoxysulfuron fb 2,4-D. The results of this study provide sustainable weed management options to farmers growing DSR.