181 resultados para South-Eastern Australia
Resumo:
Biodiversity of sharks in the tropical Indo-Pacific is high, but species-specific information to assist sustainable resource exploitation is scarce. The null hypothesis of population genetic homogeneity was tested for scalloped hammerhead shark (Sphyrna lewini, n=244) and the milkshark (Rhizoprionodon acutus, n=209) from northern and eastern Australia, using nuclear (S. lewini, eight microsatellite loci; R. acutus, six loci) and mitochondrial gene markers (873 base pairs of NADH dehydrogenase subunit 4). We were unable to reject genetic homogeneity for S. lewini, which was as expected based on previous studies of this species. Less expected were similar results for R. acutus, which is more benthic and less vagile than S. lewini. These features are probably driving the genetic break found between Australian and central Indonesian R. acutus (F-statistics; mtDNA, 0.751 to 0.903; microsatellite loci, 0.038 to 0.047). Our results support the spatially-homogeneous management plan for shark species in Queensland, but caution is advised for species yet to be studied.
Resumo:
The spotted gum species complex represents a group of four eucalypt hardwood taxa that have a native range that spans the east coast of Australia, with a morphological cline from Victoria to northern Queensland. Of this group, Corymbia citriodora subsp. variegata (CCV) is widespread in south-eastern Queensland and northern New South Wales. It is currently the most commonly harvested native hardwood in Queensland. However, little basic knowledge of the reproductive biology of the species is available to inform genetic improvement and resource management programmes. Here we take an integrative approach, using both field and molecular data, to identify ecological factors important to mating patterns in native populations of CCV. Field observation of pollinator visitation and flowering phenology of 20 trees showed that foraging behaviour of pollinator guilds varies depending on flowering phenology and canopy structure. A positive effect of tree mean flowering effort was found on insect visitation, while bat visitation was predicted by tree height and by the number of trees simultaneously bearing flowers. Moreover, introduced honeybees were observed frequently, performing 73% of detected flower visits. Conversely, nectar-feeding birds and mammals were observed sporadically with lorikeets and honeyeaters each contributing to 11% of visits. Fruit bats, represented solely by the grey-headed flying fox, performed less than 2% of visits. Genotyping at six microsatellite markers in 301 seeds from 17 families sampled from four of Queensland's native forests showed that CCV displays a mixed-mating system that is mostly outcrossing (tm = 0.899 ± 0.021). Preferential effective pollination from near-neighbours was detected by means of maximum-likelihood paternity analysis with up to 16% of reproduction events resulting from selfing. Forty to 48% of fertilising pollen was also carried from longer distance (>60 m). Marked differences in foraging behaviour and visitation frequency between observed pollinator guilds suggests that the observed dichotomy of effective pollen movement in spotted gums may be due to frequent visit from introduced honeybees favouring geitonogamy and sporadic visits from honeyeaters and fruit bats resulting in potential long-distance pollinations.
Resumo:
Spotted gum (Corymbia citriodora subsp. variegata and C. maculata) is a valuable source of commercial timber and suitable for a wide range of different soil types in eastern Australia. The main biological constraint to further expansion of spotted gum plantations is Quambalaria shoot blight caused by the fungus Quambalaria pitereka. Surveys conducted to evaluate the impact of Quambalaria shoot blight have shown that the disease is present in all spotted gum plantations and on a range of Corymbia species and hybrids in subtropical and tropical regions surveyed in eastern Australia. More recently, Q. eucalypti has also been identified from a range of Eucalyptus species in these regions. Both pathogens have also been found associated with foliage blight and die-back of amenity trees and Q. pitereka in native stands of Corymbia species, which is the probable initial infection source for plantations. Infection by Q. pitereka commonly results in the repeated destruction of the growing tips and the subsequent formation of a bushy crown or death of trees in severe cases. In comparison, Q. eucalypti causes small, limited lesions and has in some cases been associated with insect feeding. It has not been recorded as causing severe shoot and stem blight. A better understanding of factors influencing disease development and host-pathogen interactions is essential in the development of a disease management strategy for these poorly understood but important pathogens in the rapidly expanding eucalypt (Corymbia and Eucalyptus spp.) plantation industry in subtropical and tropical eastern Australia.
Resumo:
Microsatellite markers were used to examine spatio-temporal genetic variation in the endangered eastern freshwater cod Maccullochella ikei in the Clarence River system, eastern Australia. High levels of population structure were detected. A model-based clustering analysis of multilocus genotypes identified four populations that were highly differentiated by F-statistics (FST = 0· 09 − 0· 49; P < 0· 05), suggesting fragmentation and restricted dispersal particularly among upstream sites. Hatchery breeding programmes were used to re-establish locally extirpated populations and to supplement remnant populations. Bayesian and frequency-based analyses of hatchery fingerling samples provided evidence for population admixture in the hatchery, with the majority of parental stock sourced from distinct upstream sites. Comparison between historical and contemporary wild-caught samples showed a significant loss of heterozygosity (21%) and allelic richness (24%) in the Mann and Nymboida Rivers since the commencement of stocking. Fragmentation may have been a causative factor; however, temporal shifts in allele frequencies suggest swamping with hatchery-produced M. ikei has contributed to the genetic decline in the largest wild population. This study demonstrates the importance of using information on genetic variation and population structure in the management of breeding and stocking programmes, particularly for threatened species.
Resumo:
Aim: This study investigated the use of stable δ13C and δ18O isotopes in the sagittal otolith carbonate of narrow-barred Spanish mackerel, Scomberomorus commerson, as indicators of population structure across Australia. Location: Samples were collected from 25 locations extending from the lower west coast of Western Australia (30°), across northern Australian waters, and to the east coast of Australia (18°) covering a coastline length of approximately 9500 km, including samples from Indonesia. Methods: The stable δ13C and δ18O isotopes in the sagittal otolith carbonate of S. commerson were analysed using standard mass spectrometric techniques. The isotope ratios across northern Australian subregions were subjected to an agglomerative hierarchical cluster analysis to define subregions. Isotope ratios within each of the subregions were compared to assess population structure across Australia. Results: Cluster analysis separated samples into four subregions: central Western Australia, north Western Australia, northern Australia and the Gulf of Carpentaria and eastern Australia. Isotope signatures for fish from a number of sampling sites from across Australia and Indonesia were significantly different, indicating population separation. No significant differences were found in otolith isotope ratios between sampling times (no temporal variation). Main conclusions: Significant differences in the isotopic signatures of S. commerson demonstrate that there is unlikely to be any substantial movement of fish among these spatially discrete adult assemblages. The lack of temporal variation among otolith isotope ratios indicates that S. commerson populations do not undergo longshore spatial shifts in distribution during their life history. The temporal persistence of spatially explicit stable isotopic signatures indicates that, at these spatial scales, the population units sampled comprise functionally distinct management units or separate ‘stocks’ for many of the purposes of fisheries management. The spatial subdivision evident among populations of S. commerson across northern and western Australia indicates that it may be advantageous to consider S. commerson population dynamics and fisheries management from a metapopulation perspective (at least at the regional level).
Resumo:
Combating the spread of invasive fish is problematic, with eradication rarely possible and control options varying enormously in their effectiveness. In two small impoundments in north-eastern Australia, an electrofishing removal program was conducted to control an invasive tilapia population. We hypothesised that electrofishing would reduce the population density of Oreochromis mossambicus (Mozambique tilapia), to limit the risk of downstream spread into areas of high conservation value. We sampled by electrofishing monthly for 33 months. Over this period, there was an 87% decline in catch per unit effort (CPUE) of mature fish, coupled with a corresponding increase of 366% in the number of juveniles, suggesting a density-dependent response in the stock-recruitment relationship for the population. Temperature was inversely related to CPUE (r=0.43, lag=10 days), implying greater electrofishing efficiency in cooler months. The reduction in breeding stock is likely to reduce the risk of spread and render the population vulnerable to other control measures such as netting and/or biological control. Importantly, the current study suggests routine electrofishing may be a useful control tool for invasive fish in small impoundments when the use of more destructive techniques, such as piscicides, is untenable.
Resumo:
Sub-tropical and tropical plantations of Eucalyptus grandis hybrids in eastern Australia have been severely affected by anamorphs of Teratosphaeria (formerly Kirramyces) causing a serious leaf blight disease. Initially the causal organism in Queensland, Australia, was identified as Teratosphaeria eucalypti, a known leaf parasite of endemic Eucalyptus spp. However, some inconsistencies in symptoms, damage and host range suggested that the pathogen in Queensland may be a new species. Isolates of T. eucalypti from throughout its known endemic range, including Queensland and New Zealand, where it is an exotic pathogen, were compared using multiple gene phylogenies. Phylogenetic studies revealed that the species responsible for leaf blight in Queensland represents a new taxon, described here as Teratosphaeria pseudoeucalypti. While the DNA sequence of T. pseudoeucalypti was more similar to T. eucalypti, the symptoms and cultural characteristics resembled that of T. destructans. The impact of this disease in central Queensland has increased annually and is the major threat to the eucalypt plantation industry in the region.
Resumo:
Experiments at 2 sites in subtropical eastern Australia investigated the variation in agronomic attributes, quality and genetic structure existing within: naturally-occurring populations of kikuyu ( Pennisetum clandestinum) from within Australia; selections produced from the treatment of Whittet seed with mutagenic chemicals; and available cultivars. Runners were collected from coastal areas extending from Western Australia to the Atherton Tableland in north Queensland. One experiment evaluated 10 mutagenic selections and 4 cultivars in a lattice design and the other evaluated 12 ecotypes and 3 cultivars in a randomised block design. The experimental unit was single plants, which were sown on a 1.5 m grid into a weed-free seed-bed (Mutdapilly) or a killed kikuyu stand (Wollongbar), both of which were kept clear of weeds and other kikuyu plants for the duration of the experiments. Foliage height, forage production and runner yield were assessed. Leaf material was analysed for concentrations of crude protein (CP), acid detergent fibre (ADF) and neutral detergent fibre (NDF) and for in vitro dry matter digestibility (IVDDM) in autumn, winter and spring. DNA was extracted from each plant in the ecotype comparison and subjected to a modified DAF (DNA amplification fingerprinting) analysis to determine the level of genetic relatedness. In the first experiment, none of the mutagenic lines derived from Whittet yielded significantly more or was more digestible than commercial Whittet material, although some selections were superior to the other commercial kikuyu cultivars, Noonan and Crofts, and 'common' kikuyu. However, there were significant differences in plant height and runner expansion. In the second experiment, significant differences in plant height, foliage yield, runner development, and leaf CP, ADF, NDF and IVDDM concentrations were demonstrated between the ecotypes, mutagenic selections and cultivars. There was a 4- to 6-fold difference in plant yield and a 6- to 10-fold difference in runner production between the ecotypes at the 2 sites. Quality of the leaf ranged from 200 to 270 g/kg (CP), from 700 to 770 g/kg (IVDDM), from 170 to 250 g/kg (ADF) and from 470 to 550 g/kg (NDF). Improvements in quality and agronomic attributes were not mutually exclusive. Genetic fingerprint analysis of the kikuyu lines indicated that they formed 2 broad groupings. Most of the regional ecotypes were grouped with 'common' kikuyu as represented by the material collected from Wollongbar, and the Beechmont, Atherton Tableland and Gympie ecotypes were grouped with the registered cultivars Whittet, Noonan and Crofts. Two lines produced by mutagenesis from Whittet remained closely linked to Whittet. These results suggest that there was variation between populations of kikuyu in yield, quality and genetic diversity but that mutagenesis by treating seed with sodium azide and diethylene sulphide did not achieve a significant change in the digestibility of leaf over cv. Whittet.
Resumo:
Climate affects the custard apple industry in a range of ways through impacts on growth, disease risk, fruit set and industry location. Climates in Australia are influenced by surrounding oceans, and are very variable from year to year. However, amidst this variability there are significant trends, with Australian annual mean temperatures increasing since 1910, and particularly since 1950, with night-time temperatures increasing faster (0.11oC/decade) than daytime temperatures (0.06oC/decade). These temperature increases and other climate changes are expected to continue as a result of greenhouse gas emissions, with ongoing impacts on the custard apple industry. Five sites were chosen to assess possible future climate changes : Mareeba, Yeppoon, Bundaberg, Nambour and Lismore, these sites representing the extent of the majority of custard apple production in eastern Australia. A fifth site (Coffs Harbour) was selected as it is south of the current production regions. A mean warming of 0.8 to 1.2oC is anticipated over most of these sites by the year 2030, relative to 1990. This paper assesses the potential effects of climate change on custard apple production, and suggests strategies for adaptation.
Resumo:
This report details the results of research into organic production of prawns in Australia. This has involved activities and experiments over two years at several sites and using a multidisciplinary approach. This includes farm trials at an inland demonstration prawn farm which solely utilises saline bore water, sample collection from two commercial prawn farms in coastal regions of south-eastern Queensland, replicated feed trials at one of DPI&F’s aquaculture research stations, specified feed manufacture at the laboratories of University of Queensland, and packaging and product storage trials and food analyses at two of DPI&F’s food technology laboratories. This work was designed to investigate and assist in the possible adoption of organic procedures by the Australian prawn farming industry. The import from Asia of cheaply produced prawns has forced all Australian prawn farmers to review their marketing procedures. Additionally investors are becoming increasingly concerned at the prospects for the expansion of this industry in Australia. Since the competition of seafood products in the marketplace is increasing on a global basis, alternate products are being investigated by those wishing to maintain and/or grow their market share. The premium paid for organic food products would hopefully provide an economic incentive for farmers to convert to organic production systems, with an added advantage that the standards that apply have beneficial implications also for the social and environmental practices of industry.
Resumo:
The reproductive biology of two invasive tilapia species, Oreochromis mossambicus and Tilapia mariae, resident in freshwater habitats in north-eastern Australia was investigated. Oreochromis mossambicus exhibited plasticity in some of its life-history characteristics that enhanced its ability to occupy a range of habitats. These included a shallow, weed-choked, freshwater coastal drain that was subject to temperature and dissolved oxygen extremes and water-level fluctuations to cooler, relatively high-altitude impoundments. Adaptations to harsher conditions included a decreased total length (LT) and age ( A) at 50% maturity (m50), short somatic growth intervals, early maturation and higher relative fecundities. Potential fecundity in both species was relatively low, but parental care ensured high survival rates of both eggs and larvae. No significant difference in the relative fecundity of T. mariae populations in a large impoundment and a coastal river was found, but there were significant differences in relative fecundities between several of the O. mossambicus populations sampled. Total length ( LT) and age at 50% maturity of O. mossambicus populations varied considerably depending on habitat. The LTm50 and Am50 values for male and female O. mossambicus in a large impoundment were considerably greater than for those resident in a small coastal drain. Monthly gonad developmental stages and gonado-somatic indices suggested that in coastal areas, spawning of O. mossambicus and T. mariae occurred throughout most of the year while in cooler, high-altitude impoundments, spawning peaked in the warmer, summer months. The contribution these reproductive characteristics make to the success of both species as colonizers is discussed in the context of future control and management options for tilapia incursions in Australia.
Resumo:
Wood quality and properties of plantation grown trees differ from those from mature, natural grown trees and this has implications for processing, manufacturing and product performance. The wood properties of genetically improved and syliculturally managed plantation trees are affected by their faster growth rates younger harvest age. This report summarises the key wood properties of species that are the primary candidates for plantation forestry in the subtropical to tropical region of eastern Australia. The planned end uses for these trees vary from short-rotation pulp to high-value products such as poles, sawn timber for appearance products and engineered wood products including structural plywood and laminated veneer lumber (LVL).
Resumo:
Macfadyena unguis-cati (L.) Gentry (Bignoniaceae) is a major environmental weed in coastal Queensland, Australia. There is a lack of quantitative data on its leaf chemistry and its impact on soil properties. Soils from infested vs uninfested areas, and leaves of M. unguis-cati and three co-occurring vine species (one exotic, two native) were collected at six sites (riparian and non-riparian) in south-eastern Queensland. Effects of invasion status, species, site and habitat type were examined using univariate and multivariate analyses. Habitat type had a greater effect on soil nutrients than on leaf chemistry. Invasion effect of M. unguis-cati on soil chemistry was more pronounced in non-riparian than in riparian habitat. Significantly higher values were obtained in M. unguis-cati infested (vs. uninfested) soils for ~50% of traits. Leaf ion concentrations differed significantly between exotic and native vines. Observed higher leaf-nutrient load (especially nitrogen, phosphorus and potassium) in exotic plants aligns with the preference of invasive plant species for disturbed habitats with higher nutrient input. Higher load of trace elements (aluminium, boron, cadmium and iron) in its leaves suggests that cycling of heavy-metal ions, many of which are potentially toxic at excess level, could be accelerated in soils of M. unguis-cati-invaded landscape. Although inferences from the present study are based on correlative data, the consistency of the patterns across many sites suggests that M. unguis-cati may improve soil fertility and influence nutrient cycling, perhaps through legacy effects of its own litter input.
Resumo:
Understanding the life history of exploited fish species is not only critical in developing stock assessments and productivity models, but has a dual function in the delineation of connectivity and geographical population structure. In this study, patterns in growth and length and age at sex change of Polydactylus macrochir, an ecologically and economically important protandrous estuarine teleost, were examined to provide preliminary information on the species' connectivity and geographic structure across northern Australia. Considerable variation in life history parameters was observed among the 18 locations sampled. Both unconstrained and constrained (t(0) = 0) estimates of von Bertalanffy growth function parameters differed significantly among all neighbouring locations with the exception of two locations in Queensland's east coast and two in Queensland's Gulf of Carpentaria waters, respectively. Comparisons of back-calculated length-at-age 2 provided additional evidence for growth differences among some locations, but were not significantly different among locations in the south-eastern Gulf of Carpentaria or on Queensland's east coast. The length and age at sex change differed markedly among locations, with fish from the east coast of Australia changing sex from males to females at significantly greater lengths and ages than elsewhere. Sex change occurred earliest at locations within Queensland's Gulf of Carpentaria, where a large proportion of small, young females were recorded. The observed differences suggest that P. macrochir likely form a number of geographically and/or reproductively distinct groups in Australian waters and suggest that future studies examining connectivity and geographic population structure of estuarine fishes will likely benefit from the inclusion of comparisons of life history parameters. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: The recent development of very high resistance to phosphine in rusty grain beetle, Cryptolestes ferrugineus (Stephens), seriously threatens stored-grain biosecurity. The aim was to characterise this resistance, to develop a rapid bioassay for its diagnosis to support pest management and to document the distribution of resistance in Australia in 20072011. RESULTS: Bioassays of purified laboratory reference strains and field-collected samples revealed three phenotypes: susceptible, weakly resistant and strongly resistant. With resistance factors of > 1000 x , resistance to phosphine expressed by the strong resistance phenotype was higher than reported for any stored-product insect species. The new time-to-knockdown assay rapidly and accurately diagnosed each resistance phenotype within 6 h. Although less frequent in western Australia, weak resistance was detected throughout all grain production regions. Strong resistance occurred predominantly in central storages in eastern Australia. CONCLUSION: Resistance to phosphine in the rusty grain beetle is expressed through two identifiable phenotypes: weak and strong. Strong resistance requires urgent changes to current fumigation dosages. The development of a rapid assay for diagnosis of resistance enables the provision of same-day advice to expedite resistance management decisions. (c) 2012 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.