216 resultados para Pest biological control
Resumo:
Insects can cause considerable damage in hardwood plantations and because pesticide use is controversial, future pest management may rely on manipulating insect behaviour. Insects use infochemical cues to identify and locate mates and host plants and this can be used to manipulate their behaviour and reduce pest impacts in plantations. Infochemicals include chemical signals produced by insects, such as pheromones and kairomones, or those produced by host plants as odours or volatiles that are attractive to insects. This research is learning how insects perceive and interact with chemical cues or infochemicals in their environment and how these interactions can be manipulated for monitoring and control. Pest species being investigated include the giant wood moth (Endoxyla cinerea), Culama wood moths, the eucalypt leaf beetle (Paropsis atomaria), red cedar tip moth (Hypsipyla robusta) and several longicorn wood borers. The project will contribute to new strategies for minimising damage and controlling pest densities in Queensland's hardwood plantations.
Resumo:
Root-lesion nematodes (RLNs) are found on 75% of grain farms in southern Queensland (QLD) and northern New South Wales (NSW) and are significant pests. This project confirmed that biological suppression of RLNs occurs in soils, examined what organisms are involved and how growers might enhance suppressiveness of soils. Field trials, and glasshouse and laboratory bioassays of soils from fields with contrasting management practices, showed suppressiveness is favoured with less tillage, more stubble and continuous intensive cropping, particularly in the top 15cm of soil. Through extensive surveys key organisms, Pasteuria bacteria, nematode-trapping fungi and predatory nematodes were isolated and identified as being present.
Resumo:
Develop and evaluate novel fungal biopesticides.
Resumo:
Painted apple moth Teia anartoides Walker (Lepidoptera: Lymantriidae), a native to Australia, was discovered in Auckland, New Zealand in late 1999 and eradicated by 2006. It was recognised in 2002 that biological control would be the most effective long-term control strategy if eradication was unsuccessful, and a search was initiated for potential biocontrol agents in Australia. In 2003, autumn and spring surveys were undertaken in Victoria, Tasmania and South Australia of the guild of parasitoid natural enemies of T. anartoides. Eggs, larvae and pupae were collected and held to rear out any parasitoids. In addition, localised searches were made in Queensland in late 2003 early 2004 and laboratory-reared juvenile stages of T. anartoides were released for recapture in both Victoria and Queensland. Acacia dealbata Link (Fabales: Fabaceae) was the main plant from which T. anartoides was recovered, followed by apple. Most T. anartoides samples were collected from Victoria and Tasmania. Eighteen species from 13 genera of egg, larval and pupal parasitoids were reared and included Diptera (Tachinidae) and Hymenoptera (Braconidae, Encyrtidae, Eulophidae and Ichneumonidae). Of the seven Hymenopteran genera recovered from the larval stage, the most common in Victoria and Tasmania was a previously unidentified larval parasitoid Cotesia Cameron (Hymenoptera: Braconidae) sp. Echthromorpha intricatoria (Fabricius) (Hymenoptera: Ichneumonidae) was the dominant pupal parasitoid. The survey showed that the parasitoid complex associated with T anartoides is structurally very similar to that on other pest Lymantriidae in the northern hemisphere such as gypsy moth (Lymantria dispar L.) (Lepidoptera: Lymantriidae). Meteorus pulchricornis (Wesmael) (Hymenoptera: Braconidae) was recorded for the first time in Australia.
Resumo:
Oreochromis mossambicus (Peters 1852) are native to the eastward flowing rivers of central and southern Africa but from the early 1930s they have been widely distributed around the world for aquaculture and for biological control of weeds and insects. While O. mossambicus are now not commonly used as an aquaculture species, the biological traits that made them a popular culture species including tolerance to wide ranging ecological conditions, generalist dietary requirements and rapid reproduction with maternal care have also made them a 'model' invader. Self-sustaining populations now exist in almost every region to which they have been imported. In Australia, since their introduction in the 1970s, O. mossambicus have become established in catchments along the east and west coasts and have the potential to colonise other adjacent drainages. It is thought that intentional translocations are likely to be the most significant factor in their spread in Australia. The ecological and physical tolerances and preferences, reproductive behaviour, hybridization and the high degree of plasticity in the life history traits of O. mossambicus are reviewed. Impacts of O. mossambicus on natural ecosystems including competitive displacement of native species, habitat alteration, predation and as a vector in the spread of diseases are discussed. Potential methods for eradicating or controlling invasive populations of O. mossambicus including physical removal, piscicides, screens, environmental management and genetic technologies are outlined.
Resumo:
The aphid parasitoid Lysiphlebus testaceipes is a potentially valuable biological control agent of Aphis gossypii a major worldwide pest of cotton. One means of increasing the abundance of a biological control agent is to provide an alternative host habitat adjacent to cropping, from which they can provide pest control services in the crop. Host selection and parasitism rate of an alternative host aphid, Aphis craccivora by L. testaceipes were studied in a series of experiments that tested its host suitability relative to A. gossypii on cotton, hibiscus and mungbean. Host acceptance, as measured by number of ovipositions was much greater in A. craccivora compared to A. gossypii, while more host aphids were accepted on mungbean than cotton. When given a choice L. testaceipes attacks more 4th instar and adult stages (63% and 70%, respectively) of both hosts than 2nd instar nymphs (47%). In a switching (host choice) experiment, L. testaceipes preferentially attacked A. craccivora on mungbean over A. gossypii on cotton. Observations of parasitoid contact with A. gossypii cornicle secretion suggest it provides a useful deterrent against parasitoid attack. From these experiments it appears L. testaceipes has a preference for A. craccivora and mungbean compared to A. gossypii and cotton, in this respect using A. craccivora and mungbean as alternative habitat may not work as the parasitoid is unlikely to switch away from its preferred host. © 2012.
Resumo:
This research aimed to develop and evaluate pre- and postharvest management strategies to reduce stem end rot (SER) incidence and extend saleable life of 'Carabao' mango fruits in Southern Philippines. Preharvest management focused on the development and improvement of fungicide spray program, while postharvest management aimed to develop alternative interventions aside from hot water treatment (HWT). Field evaluation of systemic fungicides, namely azoxystrobin ( Amistar 25SC), tebuconazole ( Folicur 25WP), carbendazim ( Goldazim 500SC), difenoconazole ( Score 250SC) and azoxystrobin+difenoconazole ( Amistar Top), reduced blossom blight severity and improved fruit setting and retention, resulting in higher fruit yield but failed to sufficiently suppress SER incidence. Based on these findings, an improved fungicide spray program was developed taking into account the infection process of SER pathogens and fungicide resistance. Timely application of protectant (mancozeb) and systemic fungicides (azoxystrobin, carbendazim and difenoconazole) during the most critical stages of mango flower and fruit development ensured higher harvestable fruit yield and minimally lowered SER incidence. Control of SER was also achieved by employing postharvest treatment such as HWT (52-55°C for 10 min), which significantly prolonged the saleable life of mango fruits. However, extended hot water treatment (EHWT; 46°C pulp temperature for 15 min), rapid heat treatment (RHT; 59°C for 30-60 sec), fungicide dip and promising biological control agents failed to satisfactorily reduce SER and prolong saleable life. In contrast, the integration of the improved spray program as preharvest management practice, and postharvest treatments such as HWT and fungicide dips (azoxystrobin, 150-175 ppm; carbendazim, 312.5 ppm; and tebuconazole, 125-156 ppm), significantly reduced disease and extended marketable life for utmost 8 days.
Resumo:
Thaumastocoris peregrinus is a sap-sucking insect that infests non-native Eucalyptus plantations in Africa, New Zealand, South America and parts of Southern Europe, in addition to street trees in parts of its native range of Australia. In South Africa, pronounced fluctuations in the population densities have been observed. To characterise spatiotemporal variability in T. peregrinus abundance and the factors that might influence it, we monitored adult population densities at six sites in the main eucalypt growing regions of South Africa. At each site, twenty yellow sticky traps were monitored weekly for 30 months, together with climatic data. We also characterised the influence of temperature on growth and survival experimentally and used this to model how temperature may influence population dynamics. T. peregrinus was present throughout the year at all sites, with annual site-specific peaks in abundance. Peaks occurred during autumn (February-April) for the Pretoria site, summer (November-January) for the Zululand site and spring (August-October) for the Tzaneen, Sabie and Piet Retief monitoring sites. Temperature (both experimental and field-collected), humidity and rainfall were mostly weakly, or not at all, associated with population fluctuations. It is clear that a complex interaction of these and other factors (e.g. host quality) influence population fluctuations in an annual, site specific cycle. The results obtained not only provide insights into the biology of T. peregrinus, but will also be important for future planning of monitoring and control programs using semiochemicals, chemical insecticides or biological control agents. © 2014 Springer-Verlag Berlin Heidelberg.
Resumo:
Previously regarded as minor nuisance pests, psocids belonging to the genus Liposcelis now pose a major problem for the effective protection of stored products worldwide. Here we examine the apparent biological and operational reasons behind this phenomenon and why conventional pest management seems to be failing. We investigate what is known about the biology, behavior, and population dynamics of major pest species to ascertain their strengths, and perhaps find weaknesses, as a basis for a rational pest management strategy. We outline the contribution of molecular techniques to clarifying species identification and understanding genetic diversity. We discuss progress in sampling and trapping and our comprehension of spatial distribution of these pests as a foundation for developing management strategies. The effectiveness of various chemical treatments and the availability and potential of nonchemical control methods are critically examined. Finally, we identify research gaps and suggest future directions for research.
Resumo:
Harvest weed seed control (HWSC) is a new approach which targets weed seed removal and/or destruction during the crop harvest operation. The success of HWSC is dependant upon weed seed retention at harvest. To identify and define the potential value of HWSC in northern farming systems, we conducted a field survey. In total 1400 transects across 70 paddocks assessed weed distribution, density and seed production at harvest time in wheat, chickpea and sorghum crops. Seventy weed species were identified, of which many had large seed numbers retained at crop harvest. The most prevalent included common sowthistle, flaxleaf fleabane, awnless barnyard grass, wild oat, and African turnip weed. Our field survey has shown there is a role for HWSC in the northern farming system. Therefore the efficacy of specific HWSC systems on problematic weeds should be evaluated in the northern region.
Resumo:
Vachellia nilotica ssp. indica (hereafter, V. n. indica) is an important tree weed in Australia. Its dense populations induce undesirable changes in the vast areas of northern Australia. Because chemical and mechanical management options appear unviable for various reasons, biological management of this tree is considered a better option. Among the many trialled arthropods in Australian context, Anomalococcus indicus, a lecanodiaspid native to India, has been identified as a potent-candidate, since in India, its native terrain, it is the most widespread and occurs throughout the year. Severe infestations of A. indicus cause defoliation, wilting and death of branches, and occasionally the tree. Populations of A. indicus have been brought into Australia and are being tested for its host specificity under quarantine conditions. This article reports the physiological damage and stress it inflicts in the shoots of V. n. indica. Younger-nymphal instars of A. indicus feed on cortical-parenchyma cells of young stems, whereas the older instars and adults feed from the phloem of old stems. Two conspicuous responses of V. n. indica arising in response to the feeding action of A. indicus are changes in the cell-wall dynamics and irregular cell divisions. The feeding action of A. indicus elicits a sequence of reactions in the stem tissues of V. n. indica such as differentiation of thick-walled elements in the outer cortical parenchyma, differential thickening of cells with supernumerary layers of either suberin or lignin, proliferations of parenchyma and phloem, wall thickening and obliteration of inner lumen of phloem cells, and the sieve plates plugged with callosic deposits. The responses are the culminations of interaction between the virulence factor (one or more of the salivary proteins?) from A. indicus and the resistance factor in V. n. indica. We have analysed structural changes in the context of their functions, by comparing the feeding action of A. indicus with that of other hemipteroids. From the level of stress it induces, this study confirms that A. indicus has the potential to be an effective biological management of V. n. indica in Australia. © 2014 © 2014 Taylor & Francis and Aboricultural Association.
Resumo:
Thaumastocoris peregrinus is a sap-sucking insect that infests non-native Eucalyptus plantations in Africa, New Zealand, South America and parts of Southern Europe, in addition to street trees in parts of its native range of Australia. In South Africa, pronounced fluctuations in the population densities have been observed. To characterise spatiotemporal variability in T. peregrinus abundance and the factors that might influence it, we monitored adult population densities at six sites in the main eucalypt growing regions of South Africa. At each site, twenty yellow sticky traps were monitored weekly for 30 months, together with climatic data. We also characterised the influence of temperature on growth and survival experimentally and used this to model how temperature may influence population dynamics. T. peregrinus was present throughout the year at all sites, with annual site-specific peaks in abundance. Peaks occurred during autumn (February–April) for the Pretoria site, summer (November–January) for the Zululand site and spring (August–October) for the Tzaneen, Sabie and Piet Retief monitoring sites. Temperature (both experimental and field-collected), humidity and rainfall were mostly weakly, or not at all, associated with population fluctuations. It is clear that a complex interaction of these and other factors (e.g. host quality) influence population fluctuations in an annual, site specific cycle. The results obtained not only provide insights into the biology of T. peregrinus, but will also be important for future planning of monitoring and control programs using semiochemicals, chemical insecticides or biological control agents.
Resumo:
The fungus causing anthracnose disease in mango, Colletotrichum gloeosporioides, (C g.), infects immature fruit early in the season, then enters a long latent phase. After harvest, when fruit start to ripen, the latency breaks and the fungus ramifies through the peel and pulp tissues causing black disease lesions. The breaking of pathogen latency in ripening mango fruit has been correlated with decreasing concentrations of the endogenous antifungal resorcinol compounds (Droby et al., 1986). The level of these antifungal resorcinols vary among mango cultivars (Droby et a1 , 1986). Controlling diseases by managing natural resistance of fruit to fungal attack could minimize the use of pesticides, which have become of major public concern on health and environmental grounds. The plant resistance activator benzo(l,2,3)thiadiazole-7-carbothioic acid S-methyl ester (trade name Bion®) has been widely reported as an effective inducer of systemic resistance. For example, Bion® was reported to induce pathogenesis-related proteins (PR proteins) and stimulate plant defence in peas (Dann and Deverall, 2000) and roses (Suo and Leung, 2001). However, until now, there is no information about the role of Bion® in activation of mango (cv. Kensington Pride) fruit resistance to anthracnose disease. The aim of this research is to determine the effect of resistance activators on defence responses of mango fruit to anthracnose disease.