151 resultados para Palisade grass


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The economic performance of a terminal crossbreeding system based on Brahman cows and a tropically adapted composite herd were compared to a straightbred Brahman herd. All systems were targeted to meet specifications of the grass-finished Japanese market. The production system modelled represented a typical individual central Queensland integrated breeding/finishing enterprise or a northern Australian vertically integrated enterprise with separate breeding and finishing properties. Due mainly to a reduced age of turnoff of Crossbred and Composite sale animals and an improved weaning rate in the Composite herd, Crossbred and Composite herds returned a gross margin of $7 and $24 per Adult Equivalent (AE) respectively above that of the Brahman herd. The benefits of changing 25% of the existing 85% of Brahmans in the northern Australian herd to either Crossbreds or Composites over a 10-year period were also examined. With no premium for carcass quality in Crossbred and Composite sale animals, annual benefits were $16 M and $61 M for Crossbreds and Composites in 2013. The cumulative Present Value (PV) of this shift over the 10-year period was $88 M and $342 M respectively, discounted at 7%. When a 5c per kg premium for carcass quality was included, differences in annual benefits rose to $30 M and $75 M and cumulative PVs to $168 M and $421 M for Crossbreds and Composites respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stenotaphrum secundatum (Walter) Kuntze, known as "St Augustinegrass" in the USA and "buffalo grass" in Australia, is a widely used turfgrass species in subtropical and warm temperate regions of the world. Throughout its range, S. secundatum encompasses a great deal of genetic diversity, which can be exploited in future breeding programs. To understand better the range of genetic variation in Australia, morphological-agronomic classification and DNA profiling were used to characterize and group 17 commercial cultivars and 18 naturalized genotypes collected from across Australia. Historically, there have been two main sources of S. secundatum in Austalia: one a reputedly sterile triploid race (the so-called Cape deme) from South Africa now represented by the Australian Common group naturalized in all Australian states; and the other a "normal" fertile diploid race naturalized north from Sydney along the NSW coast, which is referred to here as the Australian Commercial group because it has been the source of most of the new cultivars recently developed in Australia. Over the past 30 years, some US cultivars have also been introduced and commercialized; these are again "normal" fertile diploids, but from a group distinclty different from the Australian Commercial genotypes as shown by both DNA analysis and grouping based on 28 morphological-agronomic characteristics. The implications for future breeding within S. secundatum in Australia are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temperate species and tropical crop silage are the basis for forage production for the dairy industry in the Australian subtropics. Irrigation is the key resource needed for production, with little survival of temperate species under rain-grown conditions except for lucerne. Annual ryegrass (Lolium multiflorum), fertilised with either inorganic nitrogen or grown with clovers, is the main cool season forage for the dairy industry. It is sown into fully prepared seedbeds, oversown into tropical grasses, especially kikuyu (Pennisetum clandestinum) or sown after mulching. There has been a continual improvement in the performance of annual and hybrid ryegrass cultivars over the last 25 years. In small plot, cutting experiments, yields of annual ryegrass typically range from 15 to 21 t DM/ha, with equivalent on-farm yields of 7 to 14 t DM/ha of utilised material. Rust (Puccinia coronata) remains the major concern although resistance is more stable than in oats. There have also been major improvements in the performance of perennial ryegrass (L. perenne) cultivars although their persistence under grazing is insufficient to make them a reliable forage source for the subtropics. On the other hand, tall fescue (Festuca arundinacea) and prairie grass (Bromus willdenowii) cultivars perform well under cutting and grazing, although farmer resistance to the use of tall fescue is strong. White clover (Trifolium repens) is a reliable and persistent performer although disease usually reduces its performance in the third year after sowing. Persian (Shaftal) annual clover (T. resupinatum) gives good winter production but the performance of berseem clover (T. alexandrinum) is less reliable and the sub clovers (T. subterraneum) are generally not suited to clay soils of neutral to alkaline pH. Lucerne (Medicago sativa), either as a pure stand or in mixtures, is a high producing legume under both irrigation and natural rainfall. Understanding the importance of leaf and crown diseases, and the development of resistant cultivars, have been the reasons for its reliability. Insects on temperate species are not as serious a problem in the subtropics as in New Zealand (NZ). Fungal and viral diseases, on the other hand, cause many problems and forage performance would benefit from more research into resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compared daily net radiation (Rn) estimates from 19 methods with the ASCE-EWRI Rn estimates in two climates: Clay Center, Nebraska (sub-humid) and Davis, California (semi-arid) for the calendar year. The performances of all 20 methods, including the ASCE-EWRI Rn method, were then evaluated against Rn data measured over a non-stressed maize canopy during two growing seasons in 2005 and 2006 at Clay Center. Methods differ in terms of inputs, structure, and equation intricacy. Most methods differ in estimating the cloudiness factor, emissivity (e), and calculating net longwave radiation (Rnl). All methods use albedo (a) of 0.23 for a reference grass/alfalfa surface. When comparing the performance of all 20 Rn methods with measured Rn, we hypothesized that the a values for grass/alfalfa and non-stressed maize canopy were similar enough to only cause minor differences in Rn and grass- and alfalfa-reference evapotranspiration (ETo and ETr) estimates. The measured seasonal average a for the maize canopy was 0.19 in both years. Using a = 0.19 instead of a = 0.23 resulted in 6% overestimation of Rn. Using a = 0.19 instead of a = 0.23 for ETo and ETr estimations, the 6% difference in Rn translated to only 4% and 3% differences in ETo and ETr, respectively, supporting the validity of our hypothesis. Most methods had good correlations with the ASCE-EWRI Rn (r2 > 0.95). The root mean square difference (RMSD) was less than 2 MJ m-2 d-1 between 12 methods and the ASCE-EWRI Rn at Clay Center and between 14 methods and the ASCE-EWRI Rn at Davis. The performance of some methods showed variations between the two climates. In general, r2 values were higher for the semi-arid climate than for the sub-humid climate. Methods that use dynamic e as a function of mean air temperature performed better in both climates than those that calculate e using actual vapor pressure. The ASCE-EWRI-estimated Rn values had one of the best agreements with the measured Rn (r2 = 0.93, RMSD = 1.44 MJ m-2 d-1), and estimates were within 7% of the measured Rn. The Rn estimates from six methods, including the ASCE-EWRI, were not significantly different from measured Rn. Most methods underestimated measured Rn by 6% to 23%. Some of the differences between measured and estimated Rn were attributed to the poor estimation of Rnl. We conducted sensitivity analyses to evaluate the effect of Rnl on Rn, ETo, and ETr. The Rnl effect on Rn was linear and strong, but its effect on ETo and ETr was subsidiary. Results suggest that the Rn data measured over green vegetation (e.g., irrigated maize canopy) can be an alternative Rn data source for ET estimations when measured Rn data over the reference surface are not available. In the absence of measured Rn, another alternative would be using one of the Rn models that we analyzed when all the input variables are not available to solve the ASCE-EWRI Rn equation. Our results can be used to provide practical information on which method to select based on data availability for reliable estimates of daily Rn in climates similar to Clay Center and Davis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Better understanding of seed-bank dynamics of Echinochloa colona, Urochloa panicoides and Hibiscus trionum, major crop weeds in sub-tropical Australia, was needed to improve weed control. Emergence patterns and seed persistence were investigated, with viable seeds sown at different depths in large in-ground pots. Seedlings of all species emerged between October and March when mean soil temperatures were 21-23C. However, E. colona emerged as a series of flushes predominantly in the first year, with most seedlings emerging from 0-2 cm. Urochloa panicoides emerged mostly as a single large flush in the first two years, with most seedlings emerging from 5 cm. Hibiscus trionum emerged as a series of flushes over three seasons, initially with majority from 5 cm and then 0-2 cm in the later seasons. Longevity of the grass seed was short, with <5% remaining after burial at 0-2 cm for 24 months. In contrast, 38% of H. trionum seeds remained viable after the same period. Persistence of all species increased significantly with burial depth. These data highlight that management strategies need to be tailored for each species, particularly relating to the need for monitoring, application times for control tactics, impact of tillage, and time needed to reduce the seed-bank to low numbers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Field studies were conducted at two locations in southern Queensland, Australia during the 2003-2004 and 2004-2005 growing seasons to determine the differential competitiveness of sorghum (Sorghum bicolor L. Moench) cultivars and crop densities against weeds and the sorghum yield loss due to weeds. Weed competition was investigated by growing sorghum in the presence or absence of a model grass weed, Japanese millet (Echinochloa esculenta). The correlation analyses showed that the early growth traits (height, shoot biomass, and daily growth rate of the shoot biomass) of sorghum adversely affected the height, biomass, and seed production of millet, as measured at maturity. "MR Goldrush" and "Bonus MR" were the most competitive cultivars, resulting in reduced weed biomass, weed density, and weed seed production. The density of sorghum also had a significant effect on the crop's ability to compete with millet. When compared to the density of 4.5 plants per m2, sorghum that was planted at 7.5 plants per m2 suppressed the density, biomass, and seed production of millet by 22%, 27% and 38%, respectively. Millet caused a significant yield loss in comparison with the weed-free plots. The combined weed-suppressive effects of the competitive cultivars, such as MR Goldrush, and high crop densities minimized the yield losses from the weeds. These results indicate that sorghum competition against grass weeds can be improved by choosing competitive cultivars and by using a high crop density of > 7.5 plants per m2. These non-chemical options should be included in an integrated weed management program for better weed management, particularly where the control options are limited by the evolution of herbicide resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Runoff, soil loss, and nutrient loss were assessed on a Red Ferrosol in tropical Australia over 3 years. The experiment was conducted using bounded, 100-m(2) field plots cropped to peanuts, maize, or grass. A bare plot, without cover or crop, was also instigated as an extreme treatment. Results showed the importance of cover in reducing runoff, soil loss, and nutrient loss from these soils. Runoff ranged from 13% of incident rainfall for the conventional cultivation to 29% under bare conditions during the highest rainfall year, and was well correlated with event rainfall and rainfall energy. Soil loss ranged from 30 t/ha. year under bare conditions to <6 t/ha. year under cropping. Nutrient losses of 35 kg N and 35 kg P/ha. year under bare conditions and 17 kg N and 11 kg P/ha. year under cropping were measured. Soil carbon analyses showed a relationship with treatment runoff, suggesting that soil properties influenced the rainfall runoff response. The cropping systems model PERFECT was calibrated using runoff, soil loss, and soil water data. Runoff and soil loss showed good agreement with observed data in the calibration, and soil water and yield had reasonable agreement. Longterm runs using historical weather data showed the episodic nature of runoff and soil loss events in this region and emphasise the need to manage land using protective measures such as conservation cropping practices. Farmers involved in related, action-learning activities wished to incorporate conservation cropping findings into their systems but also needed clear production benefits to hasten practice change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The strategic objectives of Turf Australia (formerly the Turf Producers Association (TPA)) relating to water use in turf are to: • Source and collate information to support the case for adequate access to water for the Turf production and maintenance sectors and • Compile information generated into a convincing communication package that can be readily used by the industry in its advocacy programs (to government, regulators, media etc) More specifically, the turfgrass industry needs unbiased scientific evidence of the value of healthy grass in our environment. It needs to promote the use of adequate water even during drought periods to maintain quality turfgrass, which provides many benefits to the broader community including cooling the environment, saving energy and encouraging healthy lifestyles. The many environmental, social and health benefits of living turfgrass have been the subject of numerous investigations beyond the scope of this review. However further research is needed to fully understand the economic returns achievable by the judicious use of water for the maintenance of healthy turfgrass. Consumer education, backed by scientific evidence will highlight the “false economy” in allowing turfgrass to wither and die during conditions which require high level water restrictions. This report presents a review of the literature pertaining to research in the field of turf water use. The purpose of the review was to better understand the scope and nature of existing research results on turf water relations so that knowledge gaps could be identified in achieving the above strategic objectives of the TPA. Research to date has been found to be insufficient to compile a convincing communication package as described. However, identified knowledge gaps can now be addressed through targeted research. Information derived from targeted research will provide valuable material for education of the end user of turfgrass. Recommendations have been developed, based on the results of this desktop review. It was determined that future research in the field of turf irrigation needs to focus on a number of key factors which directly or indirectly affect the relationship between turfgrass and water use. These factors are: • Climate • Cultivar • Quality • Site use requirements • Establishment and management The overarching recommendation is to develop a strategic plan for turfgrass water relations research based around the five determinants of turf water use listed above. This plan should ensure research under these five categories is integrated into a holistic approach by which the consumer can be guided in species and/or cultivar choices as well as best management practices with respect to turfgrass water relations. Worsening drought cycles and limited supply of water for irrigation were the key factors driving every research project reviewed in this report. Subsidence of the most recent (or current) drought conditions in Australia should not be viewed by the turf industry as a reason to withdraw support or funding for research in this area. Drought conditions, limited domestic water availability and urban water restrictions will return in Australia albeit in 5, 10 or 20 years time and the turf industry has an opportunity to prepare for that time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growth of the Australian turfgrass industry has significantly expanded over recent decades. One reason for this occurring has been with development of better suited or higher quality turfgrass cultivars for Australia’s harsh climatic conditions. In recent years drought has widely affected the turfgrass industry and as such, greater drought tolerant C4 grasses such as Cynodon spp. have been used. In 2008, as part of the 24th Australian Turfgrass Conference Proceedings, Peter McMaugh wrote an extensive article on the couch grass breeding history in Australia. This paper contains an extension to his work detailing the current (1950s to 2010) Cynodon species found in Australia. Detailed information has been sourced in relation to the origin and development of the grasses which are suitable for turfgrass use. Such detail provides an interesting picture of the source of proliferation of newer cultivars and how the Australian industry has evolved with the introduction of overseas and Australian selected cultivars. The information adds to the preceding work, including morphological and agronomic attributes and how closely each selection or cultivar is related. The cultivars discussed in this article (listed alphabetically) are derived from one of the four classifications identified by the breeder/author, being (i) Cynodon sp. (although the cultivar contained within the taxa fits best being classified as a Cynodon hybrid), (ii) Cynodon dactylon x C. transvaalensis (Cynodon hybrid), (iii) Cynodon dactylon (green couch) and (iv) Cynodon dactylon x C. magenissii.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project built upon the successful outcomes of a previous project (TU02005) by adding to the database of salt tolerance among warm season turfgrass cultivars, through further hydroponic screening trials. Hydroponic screening trials focussed on new cultivars or cultivars that were not possible to cover in the time available under TU02005, including: 11 new cultivars of Paspalum vaginatum; 13 cultivars of Cynodon dactylon; six cultivars of Stenotaphrum secundatum; one accession of Cynodon transvaalensis; 12 Cynodon dactylon x transvaalensis hybrids; two cultivars of Sporobolus virginicus; five cultivars of Zoysia japonica; one cultivar of Z. macrantha, one common form of Z. tenuifolia and one Z. japonica x tenuifolia hybrid. The relative salinity tolerance of different turfgrasses is quantified in terms of their growth response to increasing levels of salinity, often defined by the salt level that equates to a 50% reduction in shoot yield, or alternatively the threshold salinity. The most salt tolerant species in these trials were Sporobolus virginicus and Paspalum vaginatum, consistent with the findings from TU02005 (Loch, Poulter et al. 2006). Cynodon dactylon showed the largest range in threshold values with some cultivars highly sensitive to salt, while others were tolerant to levels approaching that of the more halophytic grasses. Coupled with the observational and anecdotal evidence of high drought tolerance, this species and other intermediately tolerant species provide options for site specific situations in which soil salinity is coupled with additional challenges such as shade and high traffic conditions. By recognising the fact that a salt tolerant grass is not the complete solution to salinity problems, this project has been able to further investigate sustainable long-term establishment and management practices that maximise the ability of the selected grass to survive and grow under a particular set of salinity and usage parameters. Salt-tolerant turf grasses with potential for special use situations were trialled under field conditions at three sites within the Gold Coast City Council, while three sites, established under TU02005 within the Redland City Council boundaries were monitored for continued grass survival. Several randomised block experiments within Gold Coast City were established to compare the health and longevity of seashore paspalum (Paspalum vaginatum), Manila grass (Zoysia matrella), as well as the more tolerant cultivars of other species like buffalo grass (Stenotaphrum secundatum) and green couch (Cynodon dactylon). Whilst scientific results were difficult to achieve in the field situation, where conditions cannot be controlled, these trials provided valuable observational evidence of the likely survival of these species. Alternatives to laying full sod such as sprigging were investigated, and were found to be more appropriate for areas of low traffic as the establishment time is greater. Trials under controlled and protected conditions successfully achieved a full cover of Paspalum vaginatum from sprigs in a 10 week time frame. Salt affected sites are often associated with poor soil structure. Part of the research investigated techniques for the alleviation of soil compaction frequently found on saline sites. Various methods of soil de-compaction were investigated on highly compacted heavy clay soil in Redlands City. It was found that the heavy duplex soil of marine clay sediments required the most aggressive of treatments in order to achieve limited short-term effects. Interestingly, a well constructed sports field showed a far greater and longer term response to de-compaction operations, highlighting the importance of appropriate construction in the successful establishment and management of turfgrasses on salt affected sites. Fertiliser trials in this project determined plant demand for nitrogen (N) to species level. This work produced data that can be used as a guide when fertilising, in order to produce optimal growth and quality in the major turf grass species used in public parkland. An experiment commenced during TU02005 and monitored further in this project, investigated six representative warm-season turfgrasses to determine the optimum maintenance requirements for fertiliser N in south-east Queensland. In doing so, we recognised that optimum level is also related to use and intensity of use, with high profile well-used parks requiring higher maintenance N than low profile parks where maintaining botanical composition at a lower level of turf quality might be acceptable. Kikuyu (Pennisetum clandestinum) seemed to require the greatest N input (300-400 kg N/ha/year), followed by the green couch (Cynodon dactylon) cultivars ‘Wintergreen’ and ‘FLoraTeX’ requiring approximately 300 kg N/ha/year for optimal condition and growth. ‘Sir Walter’ (Stenotaphrum secundatum) and ‘Sea Isle 1’ (Paspalum vaginatum) had a moderate requirement of approximately 200 kg/ha/year. ‘Aussiblue’ (Digitaria didactyla)maintained optimal growth and quality at 100-200 kg N/ha/year. A set of guidelines has been prepared to provide various options from the construction and establishment of new grounds, through to the remediation of existing parklands by supporting the growth of endemic grasses. They describe a best management process through which salt affected sites should be assessed, remediated and managed. These guidelines, or Best Management Practices, will be readily available to councils. Previously, some high salinity sites have been turfed several times over a number of years (and Council budgets) for a 100% failure record. By eliminating this budgetary waste through targeted workable solutions, local authorities will be more amenable to investing appropriate amounts into these areas. In some cases, this will lead to cost savings as well as resulting in better quality turf. In all cases, however, improved turf quality will be of benefit to ratepayers, directly through increased local use of open space in parks and sportsfields and indirectly by attracting tourists and other visitors to the region bringing associated economic benefits. At the same time, environmental degradation and erosion of soil in bare areas will be greatly reduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Development of improved pasture grass via chemical mutagenesis and selection of mutations in lignin genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project aims to develop high quality kikuyu pasture grass via chemical mutagenesis, followed by screening for mutations in lignin biosynthesis genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DEEDI have built and maintained a living library of turf grass selections of 138 different turf cultivars. Material is also preserved in tubs in a protected growing environment. The maintenance and ongoing upgrading of these plots requires significant resources to maintain their integrity. As the plots have been in place since 2000, they are currently in need of significant repair. This project will assist in the improvement and maintenance of the turf library for the benefit of the turf industry producers and Australian turf research more generally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The threat and management of glyphosate# resistant weeds are major issues facing northern region growers. At present five weeds are confirmed glyphosate-resistant: barnyard grass, liverseed grass, windmill grass, annual ryegrass and flaxleaf fleabane. This project used 25 experiments to investigate the ecology of the grass weeds, plus new or improved chemical and non-chemical control tactics for them. The refined glyphosate resistance model developed in this project used the experiments' findings to predict the long-term impacts on evolution of resistance and on seed bank numbers of resistant weeds. These data led to revised management and resistance avoidance strategies, which were published in the Reporter newsletter, and via an on-line risk assessment tool. - See more at: http://finalreports.grdc.com.au/UQ00054#sthash.oTkCN4Sk.dpuf

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2001 a scoping study (phase I) was commissioned to determine and prioritise the weed issues of cropping systems with dryland cotton. The main findings were that the weed flora was diverse, cropping systems complex, and weeds had a major financial and economical impact. Phase II 'Best weed management strategies for dryland cropping systems with cotton' focused on improved management of the key weeds, bladder ketmia, sowthistle, fleabane, barnyard grass and liverseed grass.In Phase III 'Improving management of summer weeds in dryland cropping systems with cotton', more information on the seed-bank dynamics of key weeds was gained in six pot and field studies. The studies found that these characteristics differed between species, and even climate in the case of bladder ketmia. Species such as sowthistle, fleabane and barnyard grass emerged predominately from the surface soil. Sweet summer grass was also in this category but also had a significant proportion emerging from 5 cm depth. Bladder ketmia in central Queensland emerged mainly from the top 2 cm, whereas in southern Queensland it emerged mainly from 5 cm. Liverseed grass had its highest emergence from 5 cm below the surface. In all cases the persistence of seed increased with increasing soil depth. Fleabane was also found to be sensitive to soil type with no seedlings emerging in the self-mulching black vertisol soil. A strategic tillage trial showed that burial of fleabane seed, using a disc or chisel plough, to a depth of greater than 2 cm can significantly reduce subsequent fleabane emergence. In contrast, tillage increased barnyard grass emergence and tended to decrease persistence. This research showed that weed management plans can not be blanketed across all weed species, rather they need to be targeted for each main weed species.This project has also resulted in an increased knowledge of how to manage fleabane from the eight experiments; one in wheat, two in sorghum, one in cotton and three in fallow on double knock. For summer crops, the best option is to apply a highly effective fallow treatment prior to sowing the crops. For winter crops, the strategy is the integration of competitive crops, residual herbicide followed by a knockdown to control survivors. This project explored further the usefulness of the double knock tactic for weed control and preventing seed set. Two field and one pot experiments have shown that this tactic was highly effective for fleabane control. Paraquat products provided good control when followed by glyphosate. When 2, 4-D was added in a tank mix with glyphosate and followed by paraquat products, 99-100% control was achieved in all cases. The ideal follow-up times for paraquat products after glyphosate were 5-7 days. The preferred follow-up times for 2, 4-D after glyphosate were on the same day and one day later. The pot trial, which compared a population from a cropping field with previous glyphosate exposure and a population from a non-cropping area with no previous glyphosate herbicide exposure, showed that the pervious herbicide exposure affected the response of fleabane to herbicidal control measures. The web-based brochure on managing fleabane has been updated.Knowledge on management of summer grasses and safe use of residual herbicides was derived from eight field and pot experiments. Residual grass and broadleaf weed control was excellent with atrazine pre-plant and at-planting treatments, provided rain was received within a short interval after application. Highly effective fallow treatments (cultivation and double knock), not only gave excellent grass control in the fallow, also gave very good control in the following cotton. In the five re-cropping experiments, there were no adverse impacts on cotton from atrazine, metolachlor, metsulfuron and chlorsulfuron residues following use in previous sorghum, wheat and fallows. However, imazapic residues did reduce cotton growth.The development of strategies to reduce the heavy reliance on glyphosate in our cropping systems, and therefore minimise the risk of glyphosate resistance development, was a key factor in the research undertaken. This work included identifying suitable tactics for summer grass control, such as double knock with glyphosate followed by paraquat and tillage. Research on fleabane also concentrated on minimising emergence through tillage, and applying the double knock tactic. Our studies have shown that these strategies can be used to prevent seed set with the goal of driving down the seed bank. Utilisation of the strategies will also reduce the reliance on glyphosate, and therefore reduce the risk of glyphosate resistance developing in our cropping systems.Information from this research, including ecological and management data were collected from an additional eight paddock monitoring sites, was also incorporated into the Weeds CRC seed bank model "Weed Seed Wizard", which will be able to predict the impact of different management options on weed populations in cotton and grain farming systems. Extensive communication activities were undertaken throughout this project to ensure adoption of the new strategies for improved weed management and reduced risk for glyphosate resistance.