112 resultados para Invading plant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parthenium hysterophorus L., (Asteraceae) commonly known as parthenium weed, is a highly invasive plant that has become a problematic weed of pasture lands in Australia and many other countries around the world. For the management of this weed, an integrated approach comprising biological control and plant competition strategies was tested in southern central Queensland. Two competitive pasture plant species (butterfly pea and buffel grass), selected for their high competitive ability, worked successfully with the biological control agent (Epiblema strenuana Walker) to synergistically reduce the biomass of parthenium weed, by between 62 and 69%. In the presence of biological control agent, the corresponding biomass of competitive plants, butterfly pea and buffel grass increased in comparison to when the biological control agent had been excluded, by 15 and 35%, respectively. This suggests that biological control and competitive plants can complement one another to bring about improved management of parthenium weed in Australia. Further, this approach may be adopted in countries where some of the biological control agents are already present including South Africa, Ethiopia, India, Pakistan and Nepal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing organic carbon inputs to agricultural soils through the use of pastures or crop residues has been suggested as a means of restoring soil organic carbon lost via anthropogenic activities, such as land use change. However, the decomposition and retention of different plant residues in soil, and how these processes are affected by soil properties and nitrogen fertiliser application, is not fully understood. We evaluated the rate and extent of decomposition of 13C-pulse labelled plant material in response to nitrogen addition in four pasture soils of varying physico-chemical characteristics. Microbial respiration of buffel grass (Cenchrus ciliaris L.), wheat (Triticum aestivum L.) and lucerne (Medicago sativa L.) residues was monitored over 365-days. A double exponential model fitted to the data suggested that microbial respiration occurred as an early rapid and a late slow stage. A weighted three-compartment mixing model estimated the decomposition of both soluble and insoluble plant 13C (mg C kg−1 soil). Total plant material decomposition followed the alkyl C: O-alkyl C ratio of plant material, as determined by solid-state 13C nuclear magnetic resonance spectroscopy. Urea-N addition increased the decomposition of insoluble plant 13C in some soils (≤0.1% total nitrogen) but not others (0.3% total nitrogen). Principal components regression analysis indicated that 26% of the variability of plant material decomposition was explained by soil physico-chemical characteristics (P = 0.001), which was primarily described by the C:N ratio. We conclude that plant species with increasing alkyl C: O-alkyl C ratio are better retained as soil organic matter, and that the C:N stoichiometry of soils determines whether N addition leads to increases in soil organic carbon stocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exotic plant pests (EPPs) threaten production, market access and sustainability of Australian plant production systems. For the grains industry there are over 600 identified EPPs of which 54 are considered high priority, posing a significant threat. Despite Australia’s geographical isolation and strong quarantine systems, the threat from EPPs has never been higher with the increasing levels of travel and trade, emphasising the need for improving our efforts in prevention, preparedness and surveillance for EPPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reliable assessment of macrophyte biomass is fundamental for ecological research and management of freshwater ecosystems. While dry mass is routinely used to determine aquatic plant biomass, wet (fresh) mass can be more practical. We tested the accuracy and precision of wet mass measurements by using a salad spinner to remove surface water from four macrophyte species differing in growth form and architectural complexity. The salad spinner aided in making precise and accurate wet mass with less than 3% error. There was also little difference between operators, with a user bias estimated to be below 5%. To achieve this level of precision, only 10–20 turns of the salad spinner are needed. Therefore, wet mass of a sample can be determined in less than 1 min. We demonstrated that a salad spinner is a rapid and economical technique to enable precise and accurate macrophyte wet mass measurements and is particularly suitable for experimental work. The method will also be useful for fieldwork in situations when sample sizes are not overly large.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mango decline disease has become a major cause of tree losses of about 7-10% in all mango growing areas of Pakistan. This study evaluated the effectiveness of plant activators used in conjunction with the fungicide thiophanate methyl in managing mango decline disease. The study was conducted in the Multan district using trees rated as 1-2 on a decline severity scale and displaying symptoms of gummosis, bark splitting, canker formation, and leaf drooping. Experimental treatments included three plant activators viz. Bion, Planofix, and Root king in conjunction with or without thiophanate methyl, delivered through a macro infusion system. This was the first time a macro infusion system had been used in Pakistan. The injection system delivered the fungicide/activator mixture into the tree trunk under pressure through a series of holes bored into the xylem tissue. Tree disease symptoms were recorded fortnightly to assess the treatment efficacy. After three months, thiophanate methyl, in combination with Bion, was found to be the most effective treatment with trees displaying no apparent disease symptoms. When thiophanate methyl was used alone, or in combination with Root king and Planofix, the symptoms of bark splitting and gummosis persisted.