164 resultados para Control trópico
Resumo:
Cat's claw creeper, Dolichandra unguis-cati (L.) L.G. Lohman (syn: Macfadyena unguis-cati (L.) A.H. Gentry) (Bignoniaceae), a major environmental weed in Queensland and New South Wales, is a Weed of National Significance and an approved target for biological control. A leaf-mining jewel beetle, Hylaeogena jureceki Obenberger (Coleoptera: Buprestidae), first collected in 2002 from D. unguis-cati in Brazil and Argentina, was imported from South Africa into a quarantine facility in Brisbane in 2009 for host-specificity testing. H. jureceki adults chew holes in leaves and lay eggs on leaf margins and the emerging larvae mine within the leaves of D. unguis-cati. The generation time (egg to adult) of H. jureceki under quarantine conditions was 55.4 ± 0.2 days. Host-specificity trials conducted in Australia on 38 plant species from 11 families supplement and support South African studies which indicated that H. jureceki is highly host-specific and does not pose a risk to any non-target plant species in Australia. In no-choice tests, adults survived significantly longer (>32 weeks) on D. unguis-cati than on non-target test plant species (<3 weeks). Oviposition occurred on D. unguis-cati and one non-target test plant species, Citharexylum spinosum (Verbenaceae), but no larval development occurred on the latter species. In choice tests involving D. unguis-cati, C. spinosum and Avicennia marina (Avicenniaceae), feeding and oviposition were evident only on D. unguis-cati. The insect was approved for field release in Australia in May 2012.
Resumo:
The eradication of an invasive plant species can provide substantial ecological and economic benefits by eliminating completely the negative effects of the weed and reducing the high cost of continuing control. A 5-yr program toward the eradication of hill raspberry (Rubus niveus Thunb.) in Santiago Island is evaluated using delimitation and extirpation criteria, as well as assessment of the ecological community response to management techniques. Currently, hill raspberry is located in the humid zone of Santiago island. It is distributed over three main infestations, small patches, and many scattered individuals within an area of approximately 1,000 ha. New infestations are constantly being found; every year, new detections add an area of approximately 175 ha. Adult and juvenile individuals are still found, both beyond and within known infestations. Both plant and seed bank density of hill raspberry decreased over time where infestations were controlled. Species composition in the seed bank and existing vegetation were significantly different between areas under intensive control and adjacent uninvaded forest. After 5 yr of intensive management, delimitation of hill raspberry has not been achieved; new populations are found every year, increasing the infested area that requires management. Off-target effects on native species resulting from control efforts seem to be substantial. Although a vast increase in economic investment would allow intensive searching that might enable all individuals to be found and controlled, the resultant disturbance and off-targets effects could outweigh the conservation benefits of eradication.
Resumo:
A leaf-feeding geometrid, Chiasmia assimilis (Warren), was introduced into northern Queensland from South Africa in 2002 as a biological control agent for the invasive woody weed, prickly acacia, Acacia nilotica subsp. indica (Bentham) Brenan. The insect established in infestations in coastal areas between the townships of Ayr and Bowen where the larvae periodically cause extensive defoliation at some localities during summer and autumn. The impact of this herbivory on a number of plant parameters, including shoot length, basal stem diameter, root length, number of leaves, number of branches, and above and below ground biomass was investigated at one coastal site through an insect exclusion trial using potted seedlings and regular spray applications of a systemic insecticide to exclude the biological control agent. Half the seedlings, both sprayed and unsprayed, were placed beneath the prickly acacia canopy, the other half were placed in full sunlight. Larvae of C. assimilis were found on unsprayed seedlings in both situations. The effects of herbivory, however, were significant only for seedlings grown beneath the canopy. At the end of the five-month trial period, shoot length of these seedlings was reduced by 30%, basal stem diameter by 44%, root length by 15%, number of leaves by 97%, above ground biomass by 87%, and below ground biomass by 77% when compared to sprayed seedlings. Implications are that the insect, where established, may reduce seedling growth beneath existing canopies and in turn may help limit the formation of dense infestations. Crown Copyright (C) 2012 Published by Elsevier Inc. All rights reserved.
Resumo:
The in vivo pediculicidal effectiveness of 1% and 2% formulations of tea tree (Melaleuca alternifolia) oil (TTO) against sheep chewing lice (Bovicola ovis) was tested in two pen studies. Immersion dipping of sheep shorn two weeks before treatment in both 1% and 2% formulations reduced lice to non detectable levels. No lice were found on any of the treated sheep despite careful inspection of at least 40 fleece partings per animal at 2, 6, 12 and 20 weeks after treatment. In the untreated sheep louse numbers increased from a mean (+/- SE) of 2.4 (+/- 0.7) per 10 cm fleece part at 2 weeks to 12.3 (+/- 4.2) per part at 20 weeks. Treatment of sheep with 6 months wool by jetting (high pressure spraying into the fleece) reduced louse numbers by 94% in comparison to controls at two weeks after treatment with both 1% and 2% TTO formulations. At 6 and 12 weeks after treatment reductions were 94% and 91% respectively with the 1% formulation and 78% and 84% respectively with the 2% formulation. TTO treatment also appeared to reduce wool damage in infested sheep. Laboratory studies indicated that tea tree oil 'stripped' from solution with a progressive reduction in concentration as well as volume as more wool was dipped, indicating that reinforcement of active ingredient would be required to maintain effectiveness when large numbers of sheep are treated. The results of these studies suggest significant potential for the development of ovine lousicides incorporating TTO. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Oreochromis mossambicus (Peters 1852) are native to the eastward flowing rivers of central and southern Africa but from the early 1930s they have been widely distributed around the world for aquaculture and for biological control of weeds and insects. While O. mossambicus are now not commonly used as an aquaculture species, the biological traits that made them a popular culture species including tolerance to wide ranging ecological conditions, generalist dietary requirements and rapid reproduction with maternal care have also made them a 'model' invader. Self-sustaining populations now exist in almost every region to which they have been imported. In Australia, since their introduction in the 1970s, O. mossambicus have become established in catchments along the east and west coasts and have the potential to colonise other adjacent drainages. It is thought that intentional translocations are likely to be the most significant factor in their spread in Australia. The ecological and physical tolerances and preferences, reproductive behaviour, hybridization and the high degree of plasticity in the life history traits of O. mossambicus are reviewed. Impacts of O. mossambicus on natural ecosystems including competitive displacement of native species, habitat alteration, predation and as a vector in the spread of diseases are discussed. Potential methods for eradicating or controlling invasive populations of O. mossambicus including physical removal, piscicides, screens, environmental management and genetic technologies are outlined.
Resumo:
Genotypic variability in root system architecture has been associated with root angle of seedlings and water extraction patterns of mature plants in a range of crops. The potential inclusion of root angle as a selection criterion in a sorghum breeding program requires (1) availability of an efficient screening method, (2) presence of genotypic variation with high heritability, and (3) an association with water extraction pattern. The aim of this study was to determine the feasibility for inclusion of nodal root angle as a selection criterion in sorghum breeding programs. A high-throughput phenotypic screen for nodal root angle in young sorghum plants has recently been developed and has been used successfully to identify significant variation in nodal root angle across a diverse range of inbred lines and a mapping population. In both cases, heritabilities for nodal root angle were high. No association between nodal root angle and plant size was detected. This implies that parental inbred lines could potentially be used to asses nodal root angle of their hybrids, although such predictability is compromised by significant interactions. To study effects of nodal root angle on water extraction patterns of mature plants, four inbred lines with contrasting nodal root angle at seedling stage were grown until at least anthesis in large rhizotrons. A consistent trend was observed that nodal root angle may affect the spatial distribution of root mass of mature plants and hence their ability to extract soil water, although genotypic differences were not significant. The potential implications of this for specific adaptation to drought stress are discussed. Results suggest that nodal root angle of young plants can be a useful selection criterion for specific drought adaptation, and could potentially be used in molecular breeding programs if QTLs for root angle can be identified. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In the last decade, Conyza bonariensis has become a widespread and difficult-to-control weed in Australian broad-acre cropping, particularly in glyphosate-based zero-tilled fallows of the subtropical grain region. The first Australian populations of C. bonariensis, where it is known as flaxleaf fleabane, were confirmed resistant to glyphosate in 2010. Control with alternative herbicides in fallows has been inconsistent, with earlier research indicating that weed age could be a potential contributing factor. In two field experiments, the impact of weed age (one, two and three months) was measured on the efficacy of six non-selective herbicide mixtures and sequential applications for control in fallows. In another two experiments we evaluated 11 non-selective herbicides, mixtures and sequential applications applied to one and three month old weeds using higher rates on older weeds. When herbicide rates were consistent for different weed ages, efficacy was reduced only by an average of 1% when two month old weeds were treated compared to one month old weeds. However when applied to three month old weeds, efficacy of treatments was significantly (P < 0.001) reduced by 3-30%. When herbicide rates were increased, weed age had no adverse effect on efficacy, which ranged from 90 to 100%, for amitrole, glyphosate mixed with 2,4-D amine plus picloram, and three sequential application treatments of glyphosate mixtures followed with bipyridyl products. Thus, this problem weed can be controlled effectively and consistently at the rosette stage of one to two months old, or three month old weeds with several different treatments at robust rates. These effective glyphosate alternatives and sequential-application tactics will minimise replenishment of the soil seed-bank and further reduce the risk for further evolution of glyphosate resistance. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Southern Hemisphere plantation forestry has grown substantially over the past few decades and will play an increasing role in fibre production and carbon sequestration in future. The sustainability of these plantations is, however, increasingly under pressure from introduced pests. This pressure requires an urgent and matching increase in the speed and efficiency at which tools are developed to monitor and control these pests. To consider the potential role of semiochemicals to address the need for more efficient pest control in Southern Hemisphere plantations, particularly by drawing from research in other parts of the world. Semiochemical research in forestry has grown exponentially over the last 40 years but has been almost exclusively focussed on Northern Hemisphere forests. In these forests, semiochemicals have played an important role to enhance the efficiency of integrated pest management programmes. An analysis of semiochemical research from 1970 to 2010 showed a rapid increase over time. It also indicated that pheromones have been the most extensively studied type of semiochemical in forestry, contributing to 92% of the semiochemical literature over this period, compared with research on plant kairomones. This research has led to numerous applications in detection of new invasions, monitoring population levels and spread, in addition to controlling pests by mass trapping or disrupting of aggregation and mating signals. The value of semiochemicals as an environmentally benign and efficient approach to managing forest plantation pests in the Southern Hemisphere seems obvious. There is, however, a lack of research capacity and focus to optimally capture this opportunity. Given the pressure from increasing numbers of pests and reduced opportunities to use pesticides, there is some urgency to develop semiochemical research capacity.
Resumo:
Increasing resistance to phosphine (PH 3) in insect pests, including lesser grain borer (Rhyzopertha dominica) has become a critical issue, and development of effective and sustainable strategies to manage resistance is crucial. In practice, the same grain store may be fumigated multiple times, but usually for the same exposure period and concentration. Simulating a single fumigation allows us to look more closely at the effects of this standard treatment.We used an individual-based, two-locus model to investigate three key questions about the use of phosphine fumigant in relation to the development of PH 3 resistance. First, which is more effective for insect control; long exposure time with a low concentration or short exposure period with a high concentration? Our results showed that extending exposure duration is a much more efficient control tactic than increasing the phosphine concentration. Second, how long should the fumigation period be extended to deal with higher frequencies of resistant insects in the grain? Our results indicated that if the original frequency of resistant insects is increased n times, then the fumigation needs to be extended, at most, n days to achieve the same level of insect control. The third question is how does the presence of varying numbers of insects inside grain storages impact the effectiveness of phosphine fumigation? We found that, for a given fumigation, as the initial population number was increased, the final survival of resistant insects increased proportionally. To control initial populations of insects that were n times larger, it was necessary to increase the fumigation time by about n days. Our results indicate that, in a 2-gene mediated resistance where dilution of resistance gene frequencies through immigration of susceptibles has greater effect, extending fumigation times to reduce survival of homozygous resistant insects will have a significant impact on delaying the development of resistance. © 2012 Elsevier Ltd.
Resumo:
Pond apple usually occurs in swampy areas, but mechanical control may be a viable option in some locations during drier periods. Two machines, the Positrack™ and the Tracksaw™, have been trialled for initial kill rate, amount of follow-up control required, safety to field operators, cost-efficiency and selectivity (effect on native vegetation), compared to other control options. The Positrack™ is a tracked bobcat with a slasher-type attachment that cuts individual trees off near ground level and mulches them. It has no on-board herbicide application capability and requires an additional on-ground operator to apply herbicide by hand. The Tracksaw™ is a tracked mini-excavator with a chainsaw bar and spray applicator on the boom that cuts individual trees off near ground level and applies chemical immediately to the cut stump, requiring only a single operator. Initial trials were done in infestations of similar sizes and densities at the Daintree (Positrack™) and in Innisfail (Tracksaw™) in late 2009. Kill rates to date are 83% for Positrack™ mechanical, 95% for Positrack™ mechanical plus herbicide, and 78% for the Tracksaw™ combined treatment. If ongoing comparison proves either of these machines to be more cost effective, selective, and safer than traditional control methods, mechanical control methods may become more widely used.
Resumo:
INTRODUCTION:Terrestrial top-predators are expected to regulate and stabilise food webs through their consumptive and non-consumptive effects on sympatric mesopredators and prey. The lethal control of top-predators has therefore been predicted to inhibit top-predator function, generate the release of mesopredators and indirectly harm native fauna through trophic cascade effects. Understanding the outcomes of lethal control on interactions within terrestrial predator guilds is important for zoologists, conservation biologists and wildlife managers. However, few studies have the capacity to test these predictions experimentally, and no such studies have previously been conducted on the eclectic suite of native and exotic, mammalian and reptilian taxa we simultaneously assess. We conducted a series of landscape-scale, multi-year, manipulative experiments at nine sites spanning five ecosystem types across the Australian continental rangelands to investigate the responses of mesopredators (red foxes, feral cats and goannas) to contemporary poison-baiting programs intended to control top-predators (dingoes) for livestock protection.RESULT:Short-term behavioural releases of mesopredators were not apparent, and in almost all cases, the three mesopredators we assessed were in similar or greater abundance in unbaited areas relative to baited areas, with mesopredator abundance trends typically either uncorrelated or positively correlated with top-predator abundance trends over time. The exotic mammals and native reptile we assessed responded similarly (poorly) to top-predator population manipulation. This is because poison baits were taken by multiple target and non-target predators and top-predator populations quickly recovered to pre-control levels, thus reducing the overall impact of baiting on top-predators and averting a trophic cascade.CONCLUSIONS:These results are in accord with other predator manipulation experiments conducted worldwide, and suggest that Australian populations of native prey fauna at lower trophic levels are unlikely to be negatively affected by contemporary dingo control practices through the release of mesopredators. We conclude that contemporary lethal control practices used on some top-predator populations do not produce the conditions required to generate positive responses from mesopredators. Functional relationships between sympatric terrestrial predators may not be altered by exposure to spatially and temporally sporadic application of non-selective lethal control.
Resumo:
The leaf-tying moth Hypocosmia pyrochroma Jones (Lepidoptera: Pyralidae), a native of sub tropical South America, has been introduced as a biological control agent for cat’s claw creeper, Dolichandra unguis-cati (L.) Lohman (Bignoniaceae), in Australia and South Africa. So far there has been no evidence of its field establishment in either country. A narrow temperature tolerance is a potential limiting factor for the establishment of weed biological control insects in novel habitats. In this study, we evaluated the effect of seven constant temperatures (12–40 °C) on the survival and development of H. pyrochroma in temperature-controlled cabinets. Temperatures between 20 and 30 °C were the most favorable for adult survival, oviposition, egg hatching, and larval and pupal development. Adult survival (12–40 °C) and egg development (15–35 °C) showed tolerance for wider temperature ranges than oviposition, and larval and pupal development, which were all negatively affected by both high (>30 °C) and low (<20 °C) temperatures. The degree-day (DD) requirement to complete a generation was estimated as 877 above a threshold temperature of 12 °C. Based on DD requirements and an obligatory winter diapause of pupae from mid-autumn to mid-spring, the potential number of generations (egg to adult) the leaf-tying moth can complete in a year in Australia or South Africa range from one to three. A climate-matching model predicted that the inland regions of both Australia and South Africa are less favorable for H. pyrochroma than the coastal areas. The study suggested that H. pyrochroma is more likely to establish in the coastal areas of Australia where most of the cat’s claw creeper infestations occur, than in South Africa where most of the cat’s claw creeper infestations are inland.