137 resultados para B and T Lymphocyte Attenuator
Resumo:
Fisheries managers are becoming increasingly aware of the need to quantify all forms of harvest, including that by recreational fishers. This need has been driven by both a growing recognition of the potential impact that noncommercial fishers can have on exploited resources and the requirement to allocate catch limits between different sectors of the wider fishing community in many jurisdictions. Marine recreational fishers are rarely required to report any of their activity, and some form of survey technique is usually required to estimate levels of recreational catch and effort. In this review, we describe and discuss studies that have attempted to estimate the nature and extent of recreational harvests of marine fishes in New Zealand and Australia over the past 20 years. We compare studies by method to show how circumstances dictate their application and to highlight recent developments that other researchers may find of use. Although there has been some convergence of approach, we suggest that context is an important consideration, and many of the techniques discussed here have been adapted to suit local conditions and to address recognized sources of bias. Much of this experience, along with novel improvements to existing approaches, have been reported only in "gray" literature because of an emphasis on providing estimates for immediate management purposes. This paper brings much of that work together for the first time, and we discuss how others might benefit from our experience.
Resumo:
Proper management of marine fisheries requires an understanding of the spatial and temporal dynamics of marine populations, which can be obtained from genetic data. While numerous fisheries species have been surveyed for spatial genetic patterns, temporally sampled genetic data is not available for many species. We present a phylogeographic survey of the king threadfin Polydactylus macrochir across its species range in northern Australia and at a temporal scale of 1 and 10 yr. Spatially, the overall AMOVA fixation index was Omega(st) = 0.306 (F-st' = 0.838), p < 0.0001 and isolation by distance was strong and significant (r(2) = 0.45, p < 0.001). Temporally, genetic patterns were stable at a time scale of 10 yr. However, this did not hold true for samples from the eastern Gulf of Carpentaria, where populations showed a greater degree of temporal instability and lacked spatial genetic structure. Temporal but not spatial genetic structure in the Gulf indicates demographic interdependence but also indicates that fishing pressure may be high in this area. Generally, genetic patterns were similar to another co-distributed threadfin species Eleutheronema tetradactylum, which is ecologically similar. However, the historical demography of both species, evaluated herein, differed, with populations of P. macrochir being much younger. The data are consistent with an acute population bottleneck at the last glacio-eustatic low in sea level and indicate that the king threadfin may be sensitive to habitat disturbances.
Resumo:
The off-site transport of agricultural chemicals, such as herbicides, into freshwater and marine ecosystems is a world-wide concern. The adoption of farm management practices that minimise herbicide transport in rainfall-runoff is a priority for the Australian sugarcane industry, particularly in the coastal catchments draining into the World Heritage listed Great Barrier Reef (GBR) lagoon. In this study, residual herbicide runoff and infiltration were measured using a rainfall simulator in a replicated trial on a brown Chromosol with 90–100% cane trash blanket cover in the Mackay Whitsunday region, Queensland. Management treatments included conventional 1.5 m spaced sugarcane beds with a single row of sugarcane (CONV) and 2 m spaced, controlled traffic sugarcane beds with dual sugarcane rows (0.8 m apart) (2mCT). The aim was to simulate the first rainfall event after the application of the photosynthesis inhibiting (PSII) herbicides ametryn, atrazine, diuron and hexazinone, by broadcast (100% coverage, on bed and furrow) and banding (50–60% coverage, on bed only) methods. These events included heavy rainfall 1 day after herbicide application, considered a worst case scenario, or rainfall 21 days after application. The 2mCT rows had significantly (P < 0.05) less runoff (38%) and lower peak runoff rates (43%) than CONV rows for a rainfall average of 93 mm at 100 mm h−1 (1:20 yr Average Return Interval). Additionally, final infiltration rates were higher in 2mCT rows than CONV rows, with 72 and 52 mm h−1 respectively. This resulted in load reductions of 60, 55, 47, and 48% for ametryn, atrazine, diuron and hexazinone from 2mCT rows, respectively. Herbicide losses in runoff were also reduced by 32–42% when applications were banded rather than broadcast. When rainfall was experienced 1 day after application, a large percentage of herbicides were washed off the cane trash. However, by day 21, concentrations of herbicide residues on cane trash were lower and more resistant to washoff, resulting in lower losses in runoff. Consequently, ametryn and atrazine event mean concentrations in runoff were approximately 8 fold lower at day 21 compared with day 1, whilst diuron and hexazinone were only 1.6–1.9 fold lower, suggesting longer persistence of these chemicals. Runoff collected at the end of the paddock in natural rainfall events indicated consistent though smaller treatment differences to the rainfall simulation study. Overall, it was the combination of early application, banding and controlled traffic that was most effective in reducing herbicide losses in runoff. Crown copyright © 2012
Resumo:
Variation in the reaction of cereal cultivars to crown rot caused by Fusarium spp., in particular Fusarium pseudograminearum, was identified over 50 yrs ago, however the parameters and pathways of infection by F. pseudograminearum remain poorly understood. Seedlings of wheat, barley and oat genotypes that differ in susceptibility to crown rot were inoculated with a mixture of F. pseudograminearum isolates. Seedlings were harvested from 7 to 42 days after inoculation and expanded plant parts were rated for severity of visible disease symptoms. Individual leaf sheaths were placed onto nutrient media and fungal colonies emerging from the leaf sheathes were counted to estimate the degree of fungal spread within the host tissue. Significant differences in both the timing and the severity of disease symptoms were observed in the leaf sheath tissues of different host genotypes. Across all genotypes and plant parts examined, the development of visible symptoms closely correlated with the spread of the fungus into that tissue. The degree of infection of the coleoptile and sub-crown internode varied between genotypes, but was unrelated to the putative resistance of the host. In contrast leaf sheath tissues of the susceptible barley cv. Tallon and bread wheat cv. Puseas scored higher disease ratings and consistently showed faster, earlier spread of the fungus into younger tissues than infections of the oat cv. Cleanleaf or the wheat lines 2-49 and CPI 133814. While initial infections usually spread upwards from near the base of the first leaf sheath, the pathogen did not appear to invade younger leaf sheaths only from the base, but rather spread laterally across from older leaf sheaths into younger, subtended leaf sheaths, particularly as disease progressed. Early in the infection of each leaf sheath, disease symptoms in the partially resistant genotypes were less severe than in susceptible genotypes, however as infected leaf sheaths aged, differences between genotypes lessened as disease symptoms approached maximum values. Hence, while visual scoring of disease symptoms on leaf sheaths is a reliable comparative measure of the degree of fungal infection, differences between genotypes in the development of disease symptoms are more reliably assessed using the most recently expanded leaf sheaths.
Resumo:
In this proof-of-concept study, an agricultural biocide (imidacloprid) was effectively loaded into the mesoporous silica nanoparticles (MSNs) with different pore sizes, morphologies and mesoporous structures for termite control. This resulted in nanoparticles with a large surface area, tunable pore diameter and small particle size, which are ideal carriers for adsorption and controlled release of imidacloprid. The effect of pore size, surface area and mesoporous structure on uptake and release of imidacloprid was systematically studied. It was found that the adsorption amount and release profile of imidacloprid were dependent on the type of mesoporous structure and surface area of particles. Specifically, MCM-48 type mesoporous silica nanoparticles with a three dimensional (3D) open network structure and high surface area displayed the highest adsorption capacity compared to other types of silica nanoparticles. Release of imidacloprid from these nanoparticles was found to be controlled over 48 hours. Finally, in vivo laboratory testing on termite control proved the efficacy of these nanoparticles as delivery carriers for biopesticides. We believe that the present study will contribute to the design of more effective controlled and targeted delivery for other biomolecules.
Resumo:
Stock assessment of the eastern king prawn (EKP) fishery, and the subsequent advice to management and industry, could be improved by addressing a number of issues. The recruitment dynamics of EKP in the northern (i.e., North Reef to the Swain Reefs) parts of the fishery need to be clarified. Fishers report that the size of the prawns from these areas when they recruit to the fishing grounds is resulting in suboptimal sizes/ages at first capture, and therefore localised growth overfishing. There is a need to assess alternative harvest strategies of the EKP fishery, via computer simulations, particularly seasonal and monthly or lunar-based closures to identify scenarios that improve the value of the catch, decrease costs and reduce the risk of overfishing, prior to implementing new management measures.
Resumo:
An understanding of processes regulating wheat floret and grain number at higher temperatures is required to better exploit genetic variation. In this study we tested the hypothesis that at higher temperatures, a reduction in floret fertility is associated with a decrease in soluble sugars and this response is exacerbated in genotypes low in water soluble carbohydrates (WSC). Four recombinant inbred lines contrasting for stem WSC were grown at 20/10 degrees C and 11 h photoperiod until terminal spikelet, and then continued in a factorial combination of 20/10 degrees C or 28/14 degrees C with 11 h or 16 h photoperiod until anthesis. Across environments, High WSC lines had more grains per spike associated with more florets per spike. The number of fertile florets was associated with spike biomass at booting and, by extension, with glucose amount, both higher in High WSC lines. At booting, High WSC lines had higher fixed C-13 and higher levels of expression of genes involved in photosynthesis and sucrose transport and lower in sucrose degradation compared with Low WSC lines. At higher temperature, the intrinsic rate of floret development rate before booting was slower in High WSC lines. Grain set declined with the intrinsic rate of floret development before booting, with an advantage for High WSC lines at 28/14 degrees C and 16 h. Genotypic and environmental action on floret fertility and grain set was summarised in a model.
Resumo:
Presence of the dw3 sorghum dwarfing gene had negative effects on grain yield in some genetic backgrounds and environments. In a previous study we showed that this was due to a significant reduction in shoot biomass (mainly via reduced stem mass), which in turn negatively affected grain size. The current study examines whether shoot biomass was reduced via effects of dw3 on traits associated with resource capture, such as leaf area index (LAI), light interception (LI), and canopy extinction coefficient (k) or with resource use efficiency, such as radiation use efficiency (RUE). Three pairs of near-isogenic sorghum lines differing only in the presence or absence of the dwarfing allele dw3 (3-dwarfs vs 2-dwarfs) were grown in large field plots. Biomass accumulation and LI were measured for individual canopy layers to examine canopy characteristics of tall and short types. Similar to the previously reported effects on grain yield, the effects of dw3 on RUE, LI and k varied among genetic backgrounds and environments. Interactions between dw3 and genetic background, but also interactions with environment are likely to have modulated the extent to which RUE, LI, or k contributed to biomass differences between tall and short sorghum. © 2013 .
Resumo:
Puccinia psidii has long been considered a significant threat to Australian plant industries and ecosystems. In April 2010, P. psidii was detected for the first time in Australia on the central coast of New South Wales (NSW). The fungus spread rapidly along the east coast and in December 2010 was found in Queensland (Qld) followed by Victoria a year later. Puccinia psidii was initially restricted to the southeastern part of Qld but spread as far north as Mossman. In Qld, 48 species of Myrtaceae are considered highly or extremely susceptible to the disease. The impact of P. psidii on individual trees and shrubs has ranged from minor leaf spots, foliage, stem and branch dieback to reduced fecundity. Tree death, as a result of repeated infection, has been recorded for Rhodomyrtus psidioides. Rust infection has also been recorded on flower buds, flowers and fruits of 28 host species. Morphological and molecular characteristics were used to confirm the identification of P. psidii from a range of Myrtaceae in Qld and compared with isolates from NSW and overseas. A reconstructed phylogeny based on the LSU and SSU regions of rDNA did not resolve the familial placement of P. psidii, but indicated that it does not belong to the Pucciniaceae. Uredo rangelii was found to be con-specific with all isolates of P. psidii in morphology, ITS and LSU sequence data, and host range.
Resumo:
The objective of this study was to investigate patterns of soil water extraction and drought resistance among genotypes of bermudagrass (Cynodon spp.) a perennial C-4 grass. Four wild Australian ecotypes (1-1, 25a1, 40-1, and 81-1) and four cultivars (CT2, Grand Prix, Legend, and Wintergreen) were examined in field experiments with rainfall excluded to monitor soil water extraction at 30-190 cm depths. In the study we defined drought resistance as the ability to maintain green canopy cover under drought. The most drought resistant genotypes (40-1 and 25a1) maintained more green cover (55-85% vs 5-10%) during water deficit and extracted more soil water (120-160 mm vs 77-107 mm) than drought sensitive genotypes, especially at depths from 50 to 110 cm, though all genotypes extracted water to 190 cm. The maintenance of green cover and higher soil water extraction were associated with higher stomatal conductance, photosynthetic rate and relative water content. For all genotypes, the pattern of water use as a percentage of total water use was similar across depth and time We propose the observed genetic variation was related to different root characteristics (root length density, hydraulic conductivity, root activity) although shoot sensitivity to drying soil cannot be ruled out.
Resumo:
In irrigated cropping, as with any other industry, profit and risk are inter-dependent. An increase in profit would normally coincide with an increase in risk, and this means that risk can be traded for profit. It is desirable to manage a farm so that it achieves the maximum possible profit for the desired level of risk. This paper identifies risk-efficient cropping strategies that allocate land and water between crop enterprises for a case study of an irrigated farm in Southern Queensland, Australia. This is achieved by applying stochastic frontier analysis to the output of a simulation experiment. The simulation experiment involved changes to the levels of business risk by systematically varying the crop sowing rules in a bioeconomic model of the case study farm. This model utilises the multi-field capability of the process based Agricultural Production System Simulator (APSIM) and is parameterised using data collected from interviews with a collaborating farmer. We found sowing rules that increased the farm area sown to cotton caused the greatest increase in risk-efficiency. Increasing maize area also improved risk-efficiency but to a lesser extent than cotton. Sowing rules that increased the areas sown to wheat reduced the risk-efficiency of the farm business. Sowing rules were identified that had the potential to improve the expected farm profit by ca. $50,000 Annually, without significantly increasing risk. The concept of the shadow price of risk is discussed and an expression is derived from the estimated frontier equation that quantifies the trade-off between profit and risk.
Resumo:
Q fever is a vaccine-preventable disease; despite this, high annual notification numbers are still recorded in Australia. We have previously shown seroprevalence in Queensland metropolitan regions is approaching that of rural areas. This study investigated the presence of nucleic acid from Coxiella burnetii, the agent responsible for Q fever, in a number of animal and environmental samples collected throughout Queensland, to identify potential sources of human infection. Samples were collected from 129 geographical locations and included urine, faeces and whole blood from 22 different animal species; 45 ticks were removed from two species, canines and possums; 151 soil samples; 72 atmospheric dust samples collected from two locations and 50 dust swabs collected from domestic vacuum cleaners. PCR testing was performed targeting the IS1111 and COM1 genes for the specific detection of C.burnetii DNA. There were 85 detections from 1318 animal samples, giving a detection rate for each sample type ranging from 2.1 to 6.8%. Equine samples produced a detection rate of 11.9%, whilst feline and canine samples showed detection rates of 7.8% and 5.2%, respectively. Native animals had varying detection rates: pooled urines from flying foxes had 7.8%, whilst koalas had 5.1%, and 6.7% of ticks screened were positive. The soil and dust samples showed the presence of C.burnetii DNA ranging from 2.0 to 6.9%, respectively. These data show that specimens from a variety of animal species and the general environment provide a number of potential sources for C.burnetii infections of humans living in Queensland. These previously unrecognized sources may account for the high seroprevalence rates seen in putative low-risk communities, including Q fever patients with no direct animal contact and those subjects living in a low-risk urban environment.
Resumo:
We isolated and characterized 21 microsatellite loci in the vulnerable and iconic Australian lungfish, Neoceratodus forsteri. Loci were screened across eight individuals from the Burnett River and 40 individuals from the Pine River. Genetic diversity was low with between one and six alleles per locus within populations and a maximum expected heterozygosity of 0.774. These loci will now be available to assess effective population sizes and genetic structure in N. forsteri across its natural range in South East Queensland, Australia.