115 resultados para 070707 Veterinary Microbiology (excl. Virology)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The development of a horse vaccine against Hendra virus has been hailed as a good example of a One Health approach to the control of human disease. Although there is little doubt that this is true, it is clear from the underwhelming uptake of the vaccine by horse owners to date (approximately 10%) that realisation of a One Health approach requires more than just a scientific solution. As emerging infectious diseases may often be linked to the development and implementation of novel vaccines this presentation will discuss factors influencing their uptake; using Hendra virus in Australia as a case study. Methods: This presentation will draw on data collected from the Horse owners and Hendra virus: A Longitudinal cohort study To Evaluate Risk (HHALTER) study. The HHALTER study is a mixed methods research study comprising a two-year survey-based longitudinal cohort study and qualitative interview study with horse owners in Australia. The HHALTER study has investigated and tracked changes in a broad range of issues around early uptake of vaccination, horse owner uptake of other recommended disease risk mitigation strategies, and attitudes to government policy and disease response. Interviews provide further insights into attitudes towards risk and decision-making in relation to vaccine uptake. A combination of quantitative and qualitative data analysis will be reported. Results: Data collected from more than 1100 horse owners shortly after vaccine introduction indicated that vaccine uptake and intention to vaccinate was associated with a number of risk perception factors and financial cost factors. In addition, concerns about side effects and veterinarians refusing to treat unvaccinated horses were linked to uptake. Across the study period vaccine uptake in the study cohort increased to more than 50%, however, concerns around side effects, equine performance and breeding impacts, delays to full vaccine approvals, and attempts to mandate vaccination by horse associations and event organisers have all impacted acceptance. Conclusion: Despite being provided with a safe and effective vaccine for Hendra virus that can protect horses and break the transmission cycle of the virus to humans, Australian horse owners have been reluctant to commit to it. General issues pertinent to novel vaccines, combined with challenges in the implementation of the vaccine have led to issues of mistrust and misconception with some horse owners. Moreover, factors such as cost, booster dose schedules, complexities around perceived risk, and ulterior motives attributed to veterinarians have only served to polarise attitudes to vaccine acceptance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bovine Viral Diarrhoea Virus (BVDV) is one of the most serious pathogen, which causes tremendous economic loss to the cattle industry worldwide, meriting the development of improved subunit vaccines. Structural glycoprotein E2 is reported to be a major immunogenic determinant of BVDV virion. We have developed a novel hollow silica vesicles (SV) based platform to administer BVDV-1 Escherichia coli-expressed optimised E2 (oE2) antigen as a nanovaccine formulation. The SV-140 vesicles (diameter 50 nm, wall thickness 6 nm, perforated by pores of entrance size 16 nm and total pore volume of 0.934 cm(3)g(-1)) have proven to be ideal candidates to load oE2 antigen and generate immune response. The current study for the first time demonstrates the ability of freeze-dried (FD) as well as non-FD oE2/SV140 nanovaccine formulation to induce long-term balanced antibody and cell mediated memory responses for at least 6 months with a shortened dosing regimen of two doses in small animal model. The in vivo ability of oE2 (100 mu g)/SV-140 (500 mu g) and FD oE2 (100 mu g)/SV-140 (500 mu g) to induce long-term immunity was compared to immunisation with oE2 (100 mu g) together with the conventional adjuvant Quil-A from the Quillaja saponira (10 mu g) in mice. The oE2/SV-140 as well as the FD oE2/SV-140 nanovaccine generated oE2-specific antibody and cell mediated responses for up to six months post the final second immunisation. Significantly, the cell-mediated responses were consistently high in mice immunised with oE2/SV-140 (1,500 SFU/million cells) at the six-month time point. Histopathology studies showed no morphological changes at the site of injection or in the different organs harvested from the mice immunised with 500 mu g SV-140 nanovaccine compared to the unimmunised control. The platform has the potential for developing single dose vaccines without the requirement of cold chain storage for veterinary and human applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hendra virus (HeV) causes highly lethal disease in horses and humans in the eastern Australian states of Queensland (QLD) and New South Wales (NSW), with multiple equine cases now reported on an annual basis. Infection and excretion dynamics in pteropid bats (flying-foxes), the recognised natural reservoir, are incompletely understood. We sought to identify key spatial and temporal factors associated with excretion in flying-foxes over a 2300 km latitudinal gradient from northern QLD to southern NSW which encompassed all known equine case locations. The aim was to strengthen knowledge of Hendra virus ecology in flying-foxes to improve spillover risk prediction and exposure risk mitigation strategies, and thus better protect horses and humans. Monthly pooled urine samples were collected from under roosting flying-foxes over a three-year period and screened for HeV RNA by quantitative RT-PCR. A generalised linear model was employed to investigate spatiotemporal associations with HeV detection in 13,968 samples from 27 roosts. There was a non-linear relationship between mean HeV excretion prevalence and five latitudinal regions, with excretion moderate in northern and central QLD, highest in southern QLD/northern NSW, moderate in central NSW, and negligible in southern NSW. Highest HeV positivity occurred where black or spectacled flying-foxes were present; nil or very low positivity rates occurred in exclusive grey-headed flying-fox roosts. Similarly, little red flying-foxes are evidently not a significant source of virus, as their periodic extreme increase in numbers at some roosts was not associated with any concurrent increase in HeV detection. There was a consistent, strong winter seasonality to excretion in the southern QLD/northern NSW and central NSW regions. This new information allows risk management strategies to be refined and targeted, mindful of the potential for spatial risk profiles to shift over time with changes in flying-fox species distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report summarises the findings of a three-year mixed methods research study designed to capture factors that influence horse owner Hendra virus (HeV) risk mitigation practices. The research project focuses on horse owners; their knowledge, attitudes, and risk mitigation practices, i.e. uptake of vaccination, property management, and biosecurity practices. A flexible research methodology enabled the tracking of core subject areas over time whilst also responding to new or evolving shifts in the HeV landscape, e.g. new HeV cases, event management, and issues arising in the vaccine roll-out. By tracking relationships within the data and engaging with stakeholders and the horse owner population, it is hoped that findings from the study will help to identify important linkages and effective strategies for communication/information and policy implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While many placental herpesvirus genomes have been fully sequenced, the complete genome of a marsupial herpesvirus has not been described. Here we present the first genome sequence of a metatherian herpesvirus, Macropodid herpesvirus 1 (MaHV-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bats of the genus Pteropus (Pteropodidae) are recognised as the natural host of multiple emerging pathogenic viruses of animal and human health significance, including henipaviruses, lyssaviruses and ebolaviruses. Some studies have suggested that physiological and ecological factors may be associated with Hendra virus infection in flying-foxes in Australia; however, it is essential to understand the normal range and seasonal variability of physiological biomarkers before seeking physiological associations with infection status. We aimed to measure a suite of physiological biomarkers in P. alecto over time to identify any seasonal fluctuations and to examine possible associations with life-cycle and environmental stressors. We sampled 839 adult P. alecto in the Australian state of Queensland over a 12-month period. The adjusted population means of every assessed hematologic and biochemical parameter were within the reported reference range on every sampling occasion. However, within this range, we identified significant temporal variation in these parameters, in urinary parameters and body condition, which primarily reflected the normal annual life cycle. We found no evident effect of remarkable physiological demands or nutritional stress, and no indication of clinical disease driving any parameter values outside the normal species reference range. Our findings identify underlying temporal physiological changes at the population level that inform epidemiological studies and assessment of putative physiological risk factors driving Hendra virus infection in P. alecto. More broadly, the findings add to the knowledge of Pteropus populations in terms of their relative resistance and resilience to emerging infectious disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following the SARS outbreak, extensive surveillance was undertaken globally to detect and identify coronavirus diversity in bats. This study sought to identify the diversity and prevalence of coronaviruses in bats in the Australasian region. We identified four different genotypes of coronavirus, three of which (an alphacoronavirus and two betacoronaviruses) are potentially new species, having less than 90% nucleotide sequence identity with the most closely related described viruses. We did not detect any SARS-like betacoronaviruses, despite targeting rhinolophid bats, the putative natural host taxa. Our findings support the virus-host co-evolution hypothesis, with the detection of Miniopterus bat coronavirus HKU8 (previously reported in Miniopterus species in China, Hong Kong and Bulgaria) in Australian Miniopterus species. Similarly, we detected a novel betacoronavirus genotype from Pteropus alecto which is most closely related to Bat coronavirus HKU9 identified in other pteropodid bats in China, Kenya and the Philippines. We also detected possible cross-species transmission of bat coronaviruses, and the apparent enteric tropism of these viruses. Thus, our findings are consistent with a scenario wherein the current diversity and host specificity of coronaviruses reflects co-evolution with the occasional host shift.