96 resultados para Weed competition periods


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dry direct-seeded rice (DSR) faces with complex weed problems particularly when farmers missed pre-emergence herbicide applications. Thus, an effective and strategic weed control in DSR is often required with available options of post-emergence herbicides. In such situations, tank mixtures of herbicides may provide broad spectrum weed control in DSR. Field experiments were conducted in the wet seasons of 2013 and 2014 to study weed control in response to tank mixtures of herbicides currently applied in DSR in South Asia. Results revealed that the tank mixtures of the currently available herbicides (azimsulfuron plus bispyribac or fenoxaprop, bispyribac plus fenoxaprop, and azimsulfuron plus bispyribac plus fenoxaprop; all applied as post-emergence) rarely resulted in antagonistic effects. Highest weed control efficiency (∼98%) was recorded with the tank mixture of azimsulfuron plus bispyribac plus fenoxaprop during both the years. This treatment also produced highest grain yield (7.2 t ha−1 in 2013 and 7.9 t ha−1in 2014), which was similar to the grain yield in the plots treated with the tank mix of azimsulfuron plus fenoxaprop, pendimethalin (applied as pre-emergence) followed by (fb) bispyribac, pendimethalin fb fenoxaprop, as well as pendimethalin fb azimsulfuron. Plots treated with the post-emergence application of single herbicide (i.e., azimsulfuron, bispyribac, or fenoxaprop) had lower grain yield (3.0–5.2 t ha−1 in 2013 to 3.5–6.1 t ha−1in 2014) than all the sequential herbicide treatments and tank mixtures (azimsulfuron plus fenoxaprop and azimsulfuron plus bispyribac), owing to a broad spectrum weed control. The study suggested that if farmers missed the pre-emergence application of herbicides (e.g., pendimethalin) due to erratic rains or due to other reasons, good weed control and high yield can still be obtained with tank mix applications of azimsulfuron plus fenoxaprop or azimsulfuron plus bispyribac plus fenoxaprop in DSR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weeds are a hidden foe for crop plants, interfering with their functions and suppressing their growth and development. Yield losses of ∼34 are caused by weeds among the major crops, which are grown worldwide. These yield losses are higher than the losses caused by other pests in the crops. Sustainable weed management is needed in the wake of a huge decline in crop outputs due to weed pressure. A diversity in weed management tools ensures sustainable weed control and reduces chances of herbicide resistance development in weeds. Allelopathy as a tool, can be importantly used to combat the challenges of environmental pollution and herbicide resistance development. This review article provides a recent update regarding the practical application of allelopathy for weed control in agricultural systems. Several studies elaborate on the significance of allelopathy for weed management. Rye, sorghum, rice, sunflower, rape seed, and wheat have been documented as important allelopathic crops. These crops express their allelopathic potential by releasing allelochemicals which not only suppress weeds, but also promote underground microbial activities. Crop cultivars with allelopathic potentials can be grown to suppress weeds under field conditions. Further, several types of allelopathic plants can be intercropped with other crops to smother weeds. The use of allelopathic cover crops and mulches can reduce weed pressure in field crops. Rotating a routine crop with an allelopathic crop for one season is another method of allelopathic weed control. Importantly, plant breeding can be explored to improve the allelopathic potential of crop cultivars. In conclusion, allelopathy can be utilized for suppressing weeds in field crops. Allelopathy has a pertinent significance for ecological, sustainable, and integrated weed management systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weather is a general stochastic influence on the life history of weeds. In contrast, anthropogenic disturbance (e.g. land use) is an important deterministic influence on weed demography. Our aim with this study was to investigate the relative contributions of land use and weather on the demography of Lantana camara (lantana), a weed of agricultural and natural habitats, based on the intensive monitoring of lantana populations under three land uses (viz. farm[pasture], and burnt and grazed forests) in subtropical Australia. Lantana populations were growing vigorously across all land uses (asymptotic population growth rate, λ > 3). Examination of historical demography using retrospective perturbation analyses showed that weather was a strong influence on lantana demography with the transition from an El Niño (2008–09) to a La Niña (2009–10) year having a strong positive effect on population growth rate. This effect was most marked at the grazed site, and to a lesser extent at the burnt site, with seedling-to-juvenile and juvenile-to-adult transitions contributing most to these effects. This is likely the result of burning and grazing having eliminated/reduced interspecific competition at these sites. Prospective perturbation analyses revealed that λ was most sensitive to proportionate changes in growth transitions, followed by fecundity and survival transitions. Examination of context-specific patterns in elasticity revealed that growth and fecundity transitions are likely to be the more critical vital rates to reduce λ in wet years at the burnt and grazed forest sites, compared to the farm/pasture site. Management of lantana may need to limit the transition of juveniles into the adult stages, especially in sites where lantana is free from competition (e.g. in the presence of fire or grazing), and this particularly needs to be achieved in wet years. Collectively, these results shed light on aspects of spatial and temporal variation in the demography of lantana, and offer insights on its context-specific management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invasive grasses are among the worst threats to native biodiversity, but the mechanisms causing negative effects are poorly understood. To investigate the impact of an invasive grass on reptiles, we compared the reptile assemblages that used native kangaroo grass (Themeda triandra), and black spear grass (Heteropogon contortus), to those using habitats invaded by grader grass (Themeda quadrivalvis). There were significantly more reptile species, in greater abundances, in native kangaroo and black spear grass than in invasive grader grass. To understand the sources of negative responses of reptile assemblages to the weed, we compared habitat characteristics, temperatures within grass clumps, food availability and predator abundance among these three grass habitats. Environmental temperatures in grass, invertebrate food availability, and avian predator abundances did not differ among the habitats, and there were fewer reptiles that fed on other reptiles in the invaded than in the native grass sites. Thus, native grass sites did not provide better available thermal environments within the grass, food, or opportunities for predator avoidance. We suggest that habitat structure was the critical factor driving weed avoidance by reptiles in this system, and recommend that the maintenance of heterogeneous habitat structure, including clumping native grasses, with interspersed bare ground, and leaf litter are critical to reptile biodiversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invasive grasses are among the worst threats to native biodiversity, but the mechanisms causing negative effects are poorly understood. To investigate the impact of an invasive grass on reptiles, we compared the reptile assemblages that used native kangaroo grass (Themeda triandra), and black spear grass (Heteropogon contortus), to those using habitats invaded by grader grass (Themeda quadrivalvis). There were significantly more reptile species, in greater abundances, in native kangaroo and black spear grass than in invasive grader grass. To understand the sources of negative responses of reptile assemblages to the weed, we compared habitat characteristics, temperatures within grass clumps, food availability and predator abundance among these three grass habitats. Environmental temperatures in grass, invertebrate food availability, and avian predator abundances did not differ among the habitats, and there were fewer reptiles that fed on other reptiles in the invaded than in the native grass sites. Thus, native grass sites did not provide better available thermal environments within the grass, food, or opportunities for predator avoidance. We suggest that habitat structure was the critical factor driving weed avoidance by reptiles in this system, and recommend that the maintenance of heterogeneous habitat structure, including clumping native grasses, with interspersed bare ground, and leaf litter are critical to reptile biodiversity.