145 resultados para Soil applied
Resumo:
This is part of a GRDC funded project led by Dr Jeremy Whish of CSIRO Ecosystem Sciences. The project aims to build a root-lesion nematode module into the crop growth simulation program APSIM (Agricultural Production Systems Simulator). This will utilise existing nematode and crop data from field, glasshouse and laboratory research led by Dr John Thompson. New data will be collected to validate and extend the model.
Resumo:
Work with Land and Water Australia to coordinate soil health work across Queensland and Australia.
Resumo:
PhD scholarship investigating the relative sensitivity of nitrogen fixation in adapted grain and ley legume species to low soil phosphorus.
Resumo:
Sustainable Farming Systems for Central Queensland.
Resumo:
This project aims to use simulatiion modelling to improve our understanding of the genetics and physiology of complex traits with a view to increasing the rate of genetic gain in plant breeding programs.
Resumo:
Developing best practices in Central Queensland to (a) manage difficult to control weeds; (b) improve herbicide efficacy under adverse conditions, and (c) manage weeds in wide-row crop systems.
Resumo:
Workshops to increase participants understanding and knowledge by farm businesses and healthy catchments farmers about the role of soil health in supporting sustainable through variable circumstances, farm businesses and healthy catchments.
Resumo:
Diminishing water supply, changing weather patterns and pressure to enhance environmental flows are making it imperative to optimise water use efficiency (WUE) on cotton/grain farming systems. Growers are looking for better strategies to make the best use of limited water, but it is still not clear how to best use the available water at farm and field scale. This research project investigated the impact of management strategies to deal with limited water supplies on the yield and quality of irrigated cotton and wheat. The objectives were: (1) to develop irrigation management guidelines for the main irrigated crops on the Darling Downs for full- and deficitirrigation scenarios, taking into account the critical factors that affect irrigation decisions at the local level, (2) to quantify the evapotranspiration (ET) of Bollgard II cotton and wheat and its relationship to yield and quality under full- and deficit-irrigation scenarios, and (3) to increase industry awareness and education of farming systems practises for optimised economic water use efficiency.Objective (1) was addressed by (A) collaborating with ASPRU to develop the APSFarm model within APSIM to be able to perform multi-paddock simulations. APSFarm was then tested by conducting a case study at a farm near Dalby, and (B) conducting semi-structured interviews with individual farmers and crop consultants on the Darling Downs to document the strategies they are using to deal with limited water. Objective (2) was addressed by (A) building and installing 12 large (1 m x 1m x 1.5 m) weighing lysimeters to measure crop evapotranspiration. The lysimeters were installed at the Agri-Science Queensland research station at Kingsthorpe in November 2008, (B) conducting field experiments to measure crop evapotranspiration and crop development under four irrigation treatments, including dryland, deficit-irrigation, and full irrigation. Field experiments were conducted with cotton in 2007-08 and 2008-09, and with wheat in 2008 and 2009, and (C) collaborating with USQ on a PhD thesis to quantify the impact of crop stress on crop evapotranspiration and canopy temperature. Glasshouse experiments were conducted with wheat in 2008 and with cotton in 2008-09. Objective (3) was addressed by (A) conducting a field day at Kingsthorpe in 2009, which was attended by 80 participants, (B) presenting information in conferences in Australia and overseas, (D) presenting information at farmers meeting, (E) making presentations to crop consultants, and (F) preparing extension publications.As part of this project we contributed to the development of APSfarm, which has been successfully applied to evaluate the feasibility of practices at the whole-farm scale. From growers and crop consultants interviews we learned that there is a great variety of strategies, at different scales, that they are using to deal with limited water situation. These strategies will be summarised in the "e;Limited Water Guidelines for the Darling Downs"e; that we are currently preparing. As a result of this project, we now have a state-of-the-art lysimeter research facility (23 large weighing lysimeters) to be able to conduct replicated experiments to investigate daily water use of a variety of crops under different irrigation regimes and under different environments. Under this project, a series of field and glasshouse experiments were conducted with cotton and wheat, investigating aspects like: (A) quantification of daily and seasonal crop water use under nonstressed and stressed conditions, (B) impact of row configuration on crop water use, (C) impact of water stress on yield, evapotranspiration, crop vegetative and reproductive development, soil water extraction pattern, yield and yield quality. The information obtained from this project is now being used to develop web-based tools to help growers make planning and day-to-day irrigation decisions.
Resumo:
The effectiveness of pre-plant dips of crowns in potassium phosphonate and phosphorous acid was investigated in a systematic manner to develop an effective strategy for the control of root and heart rot diseases caused by Phytophthora cinnamomi in the pineapple hybrids 'MD2' and '73-50' and cultivar Smooth Cayenne. Our results clearly indicate that a high volume spray at planting was much less effective when compared to a pre-plant dip. 'Smooth Cayenne' was found to be more resistant to heart rot than 'MD2' and '73-50', and 'Smooth Cayenne' to be more responsive to treatment with potassium phosphonate. Based on cumulative heart rot incidence over time 'MD2' was more susceptible to heart rot than '73-50' and was more responsive to an application of phosphorous acid. The highest levels of phosphonate in roots were reached one month after planting and levels declined during the next two months. Pre-plant dipping of crowns prior to planting is highly effective to control root and heart rot in the first few months but is not sufficient to maintain health of the mother plant root system up until plant crop harvest when weather conditions continue to favour infection.
Resumo:
A field experiment was established in which an amendment of poultry manure and sawdust (200 t/ha) was incorporated into some plots but not others and then a permanent pasture or a sequence of biomass-producing crops was grown with and without tillage, with all biomass being returned to the soil. After 4 years, soil C levels were highest in amended plots, particularly those that had been cropped using minimum tillage, and lowest in non-amended and fallowed plots, regardless of how they had been tilled. When ginger was planted, symphylans caused severe damage to all treatments, indicating that cropping, tillage and organic matter management practices commonly used to improve soil health are not necessarily effective for all crops or soils. During the rotational phase of the experiment, the development of suppressiveness to three key pathogens of ginger was monitored using bioassays. Results for root-knot nematode (Meloidogyne javanica) indicated that for the first 2 years, amended soil was more suppressive than non-amended soil from the same cropping and tillage treatment, whereas under pasture, the amendment only enhanced suppressiveness in the first year. Suppressiveness was generally associated with higher C levels and enhanced biological activity (as measured by the rate of fluorescein diacetate (FDA) hydrolysis and numbers of free-living nematodes). Reduced tillage also enhanced suppressiveness, as gall ratings and egg counts in the second and third years were usually significantly lower in cropped soils under minimum rather than conventional tillage. Additionally, soil that was not disturbed during the process of setting up bioassays was more suppressive than soil which had been gently mixed by hand. Results of bioassays with Fusarium oxysporum f. sp. zingiberi were too inconsistent to draw firm conclusions, but the severity of fusarium yellows was generally higher in fumigated fallow soil than in other treatments, with soil management practices having little impact on disease severity. With regard to Pythium myriotylum, biological factors capable of reducing rhizome rot were present, but were not effective enough to suppress the disease under environmental conditions that were ideal for disease development.
Resumo:
This manual identifies simple, practical tests to measure soil health and outlines the use of an on-farm testing kit to perform these tests. This testing is designed so that banana producers or agricultural consultants can asses or monitor the health of the soil inexpensively and without the need for a laboratory.
Resumo:
Dairy farms located in the subtropical cereal belt of Australia rely on winter and summer cereal crops, rather than pastures, for their forage base. Crops are mostly established in tilled seedbeds and the system is vulnerable to fertility decline and water erosion, particularly over summer fallows. Field studies were conducted over 5 years on contrasting soil types, a Vertosol and Sodosol, in the 650-mm annual-rainfall zone to evaluate the benefits of a modified cropping program on forage productivity and the soil-resource base. Growing forage sorghum as a double-crop with oats increased total mean annual production over that of winter sole-crop systems by 40% and 100% on the Vertosol and Sodosol sites respectively. However, mean annual winter crop yield was halved and overall forage quality was lower. Ninety per cent of the variation in winter crop yield was attributable to fallow and in-crop rainfall. Replacing forage sorghum with the annual legume lablab reduced fertiliser nitrogen (N) requirements and increased forage N concentration, but reduced overall annual yield. Compared with sole-cropped oats, double-cropping reduced the risk of erosion by extending the duration of soil water deficits and increasing the time ground was under plant cover. When grown as a sole-crop, well fertilised forage sorghum achieved a mean annual cumulative yield of 9.64 and 6.05 t DM/ha on the Vertosol and Sodosol, respectively, being about twice that of sole-cropped oats. Forage sorghum established using zero-tillage practices and fertilised at 175 kg N/ha. crop achieved a significantly higher yield and forage N concentration than did the industry-standard forage sorghum (conventional tillage and 55 kg N/ha. crop) on the Vertosol but not on the Sodosol. On the Vertosol, mean annual yield increased from 5.65 to 9.64 t DM/ha (33 kg DM/kg N fertiliser applied above the base rate); the difference in the response between the two sites was attributed to soil type and fertiliser history. Changing both tillage practices and N-fertiliser rate had no affect on fallow water-storage efficiency but did improve fallow ground cover. When forage sorghum, grown as a sole crop, was replaced with lablab in 3 of the 5 years, overall forage N concentration increased significantly, and on the Vertosol, yield and soil nitrate-N reserves also increased significantly relative to industry-standard sorghum. All forage systems maintained or increased the concentration of soil nitrate-N (0-1.2-m soil layer) over the course of the study. Relative to sole-crop oats, alternative forage systems were generally beneficial to the concentration of surface-soil (0-0.1 m) organic carbon and systems that included sorghum showed most promise for increasing soil organic carbon concentration. We conclude that an emphasis on double-or summer sole-cropping rather than winter sole-cropping will advantage both farm productivity and the soil-resource base.
Resumo:
Field studies were conducted over 5 years on two dairy farms in southern Queensland to evaluate the impacts of zero-tillage, nitrogen (N) fertiliser and legumes on a winter-dominant forage system based on raingrown oats. Oats was able to be successfully established using zero-tillage methods, with no yield penalties and potential benefits in stubble retention over the summer fallow. N fertiliser, applied at above industry-standard rates (140 vs. 55 kg/ha.crop) in the first 3 years, increased forage N concentration significantly and had residual effects on soil nitrate-N at both sites. At one site, crop yield was increased by 10 kg DM/ha. kg fertiliser N applied above industry-standard rates. The difference between sites in fertiliser response reflected contrasting soil and fertiliser history. There was no evidence that modifications to oats cropping practices (zero-tillage and increased N fertiliser) increased surface soil organic carbon (0-10 cm) in the time frame of the present study. When oats was substituted with annual legumes, there were benefits in improved forage N content of the oat crop immediately following, but legume yield was significantly inferior to oats. In contrast, the perennial legume Medicago sativa was competitive in biomass production and forage quality with oats at both sites and increased soil nitrate-N levels following termination. However, its contribution to winter forage was low at 10% of total production, compared with 40% for oats, and soil water reserves were significantly reduced at one site, which had an impact on the following oat production. The study demonstrated that productive grazed oat crops can be grown using zero tillage and that increased N fertiliser is more consistent in its effect on N concentration than on forage yield. A lucerne ley provides a strategy for raising soil nitrate-N concentration and increasing overall forage productivity, although winter forage production is reduced.
Resumo:
Nodal root angle in sorghum influences vertical and horizontal root distribution in the soil profile and is thus relevant to drought adaptation. In this study, we report for the first time on the mapping of four QTL for nodal root angle (qRA) in sorghum, in addition to three QTL for root dry weight, two for shoot dry weight, and three for plant leaf area. Phenotyping was done at the six leaf stage for a mapping population (n = 141) developed by crossing two inbred sorghum lines with contrasting root angle. Nodal root angle QTL explained 58.2% of the phenotypic variance and were validated across a range of diverse inbred lines. Three of the four nodal root angle QTL showed homology to previously identified root angle QTL in rice and maize, whereas all four QTL co-located with previously identified QTL for stay-green in sorghum. A putative association between nodal root angle QTL and grain yield was identified through single marker analysis on field testing data from a subset of the mapping population grown in hybrid combination with three different tester lines. Furthermore, a putative association between nodal root angle QTL and stay-green was identified using data sets from selected sorghum nested association mapping populations segregating for root angle. The identification of nodal root angle QTL presents new opportunities for improving drought adaptation mechanisms via molecular breeding to manipulate a trait for which selection has previously been very difficult.
Resumo:
On-going, high-profile public debate about climate change has focussed attention on how to monitor the soil organic carbon stock (C(s)) of rangelands (savannas). Unfortunately, optimal sampling of the rangelands for baseline C(s) - the critical first step towards efficient monitoring - has received relatively little attention to date. Moreover, in the rangelands of tropical Australia relatively little is known about how C(s) is influenced by the practice of cattle grazing. To address these issues we used linear mixed models to: (i) unravel how grazing pressure (over a 12-year period) and soil type have affected C(s) and the stable carbon isotope ratio of soil organic carbon (delta(13)C) (a measure of the relative contributions of C(3) and C(4) vegetation to C(s)); (ii) examine the spatial covariation of C(s) and delta(13)C; and, (iii) explore the amount of soil sampling required to adequately determine baseline C(s). Modelling was done in the context of the material coordinate system for the soil profile, therefore the depths reported, while conventional, are only nominal. Linear mixed models revealed that soil type and grazing pressure interacted to influence C(s) to a depth of 0.3 m in the profile. At a depth of 0.5 m there was no effect of grazing on C(s), but the soil type effect on C(s) was significant. Soil type influenced delta(13)C to a soil depth of 0.5 m but there was no effect of grazing at any depth examined. The linear mixed model also revealed the strong negative correlation of C(s) with delta(13)C, particularly to a depth of 0.1 m in the soil profile. This suggested that increased C(s) at the study site was associated with increased input of C from C(3) trees and shrubs relative to the C(4) perennial grasses; as the latter form the bulk of the cattle diet, we contend that C sequestration may be negatively correlated with forage production. Our baseline C(s) sampling recommendation for cattle-grazing properties of the tropical rangelands of Australia is to: (i) divide the property into units of apparently uniform soil type and grazing management; (ii) use stratified simple random sampling to spread at least 25 soil sampling locations about each unit, with at least two samples collected per stratum. This will be adequate to accurately estimate baseline mean C(s) to within 20% of the true mean, to a nominal depth of 0.3 m in the profile.