258 resultados para SB Plant culture
Resumo:
Root-knot nematodes (Meloidogyne spp.) are obligate, sedentary endoparasites that infect many plant species causing large economic losses worldwide. Available nematicides are being banned due to their toxicity or ozone-depleting properties and alternative control strategies are urgently required. We have produced transgenic tobacco (Nicotiana tabacum) plants expressing different dsRNA hairpin structures targeting a root-knot nematode (Meloidogyne javanica) putative transcription factor, MjTis11. We provide evidence that MjTis11 was consistently silenced in nematodes feeding on the roots of transgenic plants. The observed silencing was specific for MjTis11, with other sequence-unrelated genes being unaffected in the nematodes. Those transgenic plants able to induce silencing of MjTis11, also showed the presence of small interfering RNAs. Even though down-regulation of MjTis11 did not result in a lethal phenotype, this study demonstrates the feasibility of silencing root-knot nematode genes by expressing dsRNA in the host plant. Host-delivered RNA interference-triggered (HD-RNAi) silencing of parasite genes provides a novel disease resistance strategy with wide biotechnological applications. The potential of HD-RNAi is not restricted to parasitic nematodes but could be adapted to control other plant-feeding pests.
Resumo:
Physiological and genetic studies of leaf growth often focus on short-term responses, leaving a gap to whole-plant models that predict biomass accumulation, transpiration and yield at crop scale. To bridge this gap, we developed a model that combines an existing model of leaf 6 expansion in response to short-term environmental variations with a model coordinating the development of all leaves of a plant. The latter was based on: (1) rates of leaf initiation, appearance and end of elongation measured in field experiments; and (2) the hypothesis of an independence of the growth between leaves. The resulting whole-plant leaf model was integrated into the generic crop model APSIM which provided dynamic feedback of environmental conditions to the leaf model and allowed simulation of crop growth at canopy level. The model was tested in 12 field situations with contrasting temperature, evaporative demand and soil water status. In observed and simulated data, high evaporative demand reduced leaf area at the whole-plant level, and short water deficits affected only leaves developing during the stress, either visible or still hidden in the whorl. The model adequately simulated whole-plant profiles of leaf area with a single set of parameters that applied to the same hybrid in all experiments. It was also suitable to predict biomass accumulation and yield of a similar hybrid grown in different conditions. This model extends to field conditions existing knowledge of the environmental controls of leaf elongation, and can be used to simulate how their genetic controls flow through to yield.
Resumo:
High-value fruit crops are exposed to a range of environmental conditions that can reduce fruit quality. Solar injury (SI) or sunburn is a common disorder in tropical, sub-tropical, and temperate climates and is related to: 1) high fruit surface temperature; 2) high visible light intensity; and, 3) ultraviolet radiation (UV). Positional changes in fruit that are caused by increased weight or abrupt changes that result from summer pruning, limb breakage, or other damage to the canopy can expose fruit to high solar radiation levels, increased fruit surface temperatures, and increased UV exposure that are higher than the conditions to which they are adapted. In our studies, we examined the effects of high fruit surface temperature, saturating photosynthetically-active radiation (PAR), and short-term UV exposure on chlorophyll fluorescence, respiration, and photosynthesis of fruit peel tissues from tropical and temperate fruit in a simulation of these acute environmental changes. All tropical fruits (citrus, macadamia, avocado, pineapple, and custard apple) and the apple cultivars 'Gala', 'Gold Rush', and 'Granny Smith' increased dark respiration (A0) when exposed to UV, suggesting that UV repair mechanisms were induced. The maximum quantum efficiency of photosystem II (Fv/Fm) and the quantum efficiency of photosystem II (ΦII) were unaffected, indicating no adverse effects on photosystem II (PSII). In contrast, 'Braeburn' apple had a reduced Fv/Fm with no increase in A0 on all sampling dates. There was a consistent pattern in all studies. When Fv/Fm was unaffected by UV treatment, A0 increased significantly. Conversely, when Fv/Fm was reduced by UV treatment, then A0 was unaffected. The pattern suggests that when UV repair mechanisms are effective, PSII is adequately protected, and that this protection occurs at the cost of higher respiration. However, when the UV repair mechanisms are ineffective, not only is PSII damaged, but there is additional short-term damage to the repair mechanisms, indicated by a lack of respiration to provide energy.
Resumo:
Approximately 30% of plant nuclear genes appear to encode proteins targeted to the plastids or endoplasmic reticulum (ER). The signals that direct proteins into these compartments are diverse in sequence, but, on the basis of a limited number of tests in heterologous systems, they appear to be functionally conserved across species. To further test the generality of this conclusion, we tested the ability of two plastid transit peptides and an ER signal peptide to target green fluorescent protein (GFP) in 12 crops, including three monocots (barley, sugarcane, wheat) and nine dicots (Arabidopsis, broccoli, cabbage, carrot, cauliflower, lettuce, radish, tobacco, turnip). In all species, transient assays following microprojectile bombardment or vacuum infiltration using Agrobacterium showed that the plastid transit peptides from tomato DCL (defective chloroplast and leaves) and tobacco RbcS [ribulose bisphosphate carboxylase (Rubisco) small subunit] genes were effective in targeting GFP to the leaf plastids. GFP engineered as a fusion to the N-terminal ER signal peptide from Arabidopsis basic chitinase and a C-terminal HDEL signal for protein retention in the ER was accumulated in the ER of all species. The results in tobacco were confirmed in stably transformed cells. These signal sequences should be useful to direct proteins to the plastid stroma or ER lumen in diverse plant species of biotechnological interest for the accumulation of particular recombinant proteins or for the modification of particular metabolic streams.
Resumo:
Since 1989, researchers with the Department of Primary Industries and Fisheries (DPI&F) in Queensland, Australia, have successfully used controlled low-water exchange green-water cultures to rear the larvae of estuarine fishes and crustaceans through to metamorphosis. High survivals and excellent fry condition have been achieved for several commercially important endemic species produced for various projects. They include barramundi or sea bass, Lates calcarifer, Australian bass, Macquaria novemaculeata, dusky flathead, Platycephalus fuscus, sand whiting, Sillago ciliata, red sea bream or snapper, Pagrus auratus, banana prawn, Fenneropenaeus merguiensis, and others. The consistent success of our standardised and relatively simple approach at different localities has led to it being incorporated into general fingerling production practices at several establishments in Australia. Although post-metamorphosis rearing methods have differed for each species investigated, due to various biological and behavioural traits and project requirements, these larval rearing methods have been successful with few species-specific modifications. Initially modelled on the Taiwanese approach to rearing Penaeids in aerated low-water exchange cultures, the approach similarly appears to rely on a beneficial assemblage of micro-organisms. Conceptually, these micro-organisms may include a mixture of the air-borne primary invaders of pure phytoplankton cultures when exposed to outdoor conditions. Whilst this would vary with different sites, our experiences with these methods have consistently been favourable. Mass microalgal cultures with eco-physiological youth are used to regularly augment larval fish cultures so that rearing conditions simulate an exponential growth-phase microalgal bloom. Moderate to heavy aeration prevents settlement of particulate matter and encourages aerobic bacterial decomposition of wastes. The green-water larval rearing approach described herein has demonstrated high practical utility in research and commercial applications, and has greatly simplified marine finfish hatchery operations whilst generally lifting production capacities for metamorphosed fry in Australia. Its potential uses in areas of aquaculture other than larviculture are also discussed.
Resumo:
'Goldfinger', a tetraploid banana produced from the Fundación Hondureña de Investigación Agrícola (FHIA) breeding program, was released to the Australian industry in 1995. It was promoted as an apple-flavoured dessert banana with resistance to Fusarium wilt race 1 and subtropical race 4, as well as resistance to black and yellow Sigatoka (Mycosphaerella fijiensis and M. musicola, respectively). This study was initiated to provide agronomic information to the banana industry, which was under threat from Fusarium wilt, on a new cultivar which could replace 'Williams' (AAA, Cavendish subgroup) or 'Lady Finger' (AAB, Pome subgroup) in those areas affected by Fusarium wilt. Also few studies had reported on the production characteristics of the new tetraploid hybrids, especially from subtropical areas, and therefore two field sites, one a steep-land farm and the other a level, more productive site, were selected for planting density and spatial arrangement treatments. The optimum density in terms of commercial production, taking into account bunch weight, finger size, length of the production cycle, plant height and ease of management, was 1680 plants/ha on the steep-land site where plants were planted in single rows with 2.5 m × 2.5 m spacings. However on the level site a double-row triangular layout with inter-row distances of 4.5 m to allow vehicular access (1724 plants/ha) gave the best results. With this arrangement plants were in an alternate, triangular arrangement along a row and a spacing of 1.5 m between plants at the points of each triangle and between each block of triangles.
Resumo:
Heavy wheel traffic causes soil compaction, which adversely affects crop production and may persist for several years. We applied known compaction forces to entire plots annually for 5 years, and then determined the duration of the adverse effects on the properties of a Vertisol and the performance of crops under no-till dryland cropping with residue retention. For up to 5 years after a final treatment with a 10 Mg axle load on wet soil, soil shear strength at 70-100 mm and cone index at 180-360 mm were significantly (P < 0.05) higher than in a control treatment, and soil water storage and grain yield were lower. We conclude that compaction effects persisted because (1) there were insufficient wet-dry cycles to swell and shrink the entire compacted layer, (2) soil loosening by tillage was absent and (3) there were fewer earthworms in the compacted soil. Compaction of dry soil with 6 Mg had little effect at any time, indicating that by using wheel traffic only when the soil is dry, problems can be avoided. Unfortunately such a restriction is not always possible because sowing, tillage and harvest operations often need to be done when the soil is wet. A more generally applicable solution, which also ensures timely operations, is the permanent separation of wheel zones and crop zones in the field--the practice known as controlled traffic farming. Where a compacted layer already exists, even on a clay soil, management options to hasten repair should be considered, e.g. tillage, deep ripping, sowing a ley pasture or sowing crop species more effective at repairing compacted soil.
Resumo:
Sunflower rust caused by Puccinia helianthi is the most important disease of sunflower in Australia with the potential to cause significant yield losses in susceptible hybrids. Rapid and frequent virulence changes in the rust fungus population limit the effective lifespan of commercial cultivars and impose constant pressure on breeding programs to identify and deploy new sources of resistance. This paper contains a synopsis of virulence data accumulated over 25 years, and more recent studies of genotypic diversity and sexual recombination. We have used this synopsis, generated from both published and unpublished data, to propose the origin, evolution and distribution of new pathotypes of P. helianthi. Virulence surveys revealed that diverse pathotypes of P. helianthi evolve in wild sunflower populations, most likely because sexual recombination and subsequent selection of recombinant pathotypes occurs there. Wild sunflower populations provide a continuum of genetically heterogeneous hosts on which P. helianthi can potentially complete its sexual cycle under suitable environmental conditions. Population genetics analysis of a worldwide collection of P. helianthi indicated that Australian isolates of the pathogen are more diverse than non-Australian isolates. Additionally, the presence of the same pathotype in different genotypic backgrounds supported evidence from virulence data that sexual recombination has occurred in the Australian population of P. helianthi at some time. A primary aim of the work described was to apply our knowledge of pathotype evolution to improve resistance in sunflower to sunflower rust. Molecular markers were identified for a number of previously uncharacterised sunflower rust R-genes. These markers have been used to detect resistance genes in breeding lines and wild sunflower germplasm. A number of virulence loci that do not recombine were identified in P. helianthi. The resistance gene combinations corresponding to these virulence loci are currently being introgressed with breeding lines to generate hybrids with durable resistance to sunflower rust.
Resumo:
Melaleuca densispicata Byrnes is an uncommon species with a limited distribution, comprising disjunct populations in inland southern Queensland and northern New South Wales, Australia. It is a dense, woody shrub, 2–4 m in height, which exhibits a marked 'clumping' growth habit. It has thick, papery bark and displays many white flowers during spring or early summer. Although it has long been known to exist, M. densispicata was only formally described in 1984, and very little is currently known about its ecology or specific management requirements. There are only seven known subpopulations of the species across its range. A major population at the western limit of its distribution occurs on Currawinya National Park (28°52'S, 144°30'E). Here, it is locally abundant and listed as a noteworthy plant species under the Management Plan (Queensland Parks & Wildlife Service 2001). This study aimed to identify patterns in the distribution of M. densispicata in Currawinya National Park, describe its ecological niche and role, and provide management recommendations for the species within the study area. Recent anecdotal observations of recruitment failure in south-western Queensland (Peter McRae, QPWS, October 2004, pers. comm.; Dick O'Connell, local grazier, July 2005 pers. comm.) caused additional emphasis to be placed on the examination of recruitment and recruitment factors.
Resumo:
The Queensland Department of Primary Industries and Fisheries in collaboration with the Rural Industries Research and Development Corporation and Yuruga Nursery Pty Ltd have been conducting research into the development of five native foliage products. The three species and two cultivars being developed for commercial production are: Grevillea baileyana, Lomatia fraxinifolia, Athertonia diversifolia, Stenocarpus 'Forest Lace' and Stenocarpus 'Forest Gem'. Previous research involved an evaluation of 21 species from which these five were selected based on market comments, post harvest life and ability to grow under a range of climatic conditions. Lomatia fraxinifolia, Grevillea baileyana and Athertonia diversifolia are all native to north Queensland rainforests. Stenocarpus 'Forest Gem' and Stenocarpus 'Forest Lace' are hybrids and have been selected by Yuruga Nursery Pty Ltd. Both Stenocarpus cultivars are protected by Plant Breeders Rights. Current research into the commercial development of these species involves: market research, post harvest trials, field trials and grower training. Two field trials have been established on the Atherton Tablelands, one in the high rainfall zone at Yungaburra and the other in the low rainfall zone west of Mareeba. Field trials will evaluate the effects of fertiliser rates and pruning techniques on yield. Pests and diseases will be identified and appropriate control measures tested on trial plants. Vase life evaluations have also been carried out and the results indicate that the five foliages have exceptional vase life. All five products are being sold on the Australian domestic market in small volumes at this stage; it is anticipated that sales will significantly increase in the coming years. A number of leading exporters have indicated that the foliages may also meet the requirements of export markets. Stenocarpus 'Forest Gem' is similar in appearance to Persoonia longifolia (Barker Bush), which is a bush-picked foliage currently exported from Australia to a number of overseas markets.
Resumo:
BACKGROUND: Field studies of diuron and its metabolites 3-(3,4-dichlorophenyl)-1-methylurea (DCPMU), 3,4-dichlorophenylurea (DCPU) and 3,4-dichloroaniline (DCA) were conducted in a farm soil and in stream sediments in coastal Queensland, Australia. RESULTS: During a 38 week period after a 1.6 kg ha^-1 diuron application, 70-100% of detected compounds were within 0-15 cm of the farm soil, and 3-10% reached the 30-45 cm depth. First-order t1/2 degradation averaged 49 ± 0.9 days for the 0-15, 0-30 and 0-45 cm soil depths. Farm runoff was collected in the first 13-50 min of episodes lasting 55-90 min. Average concentrations of diuron, DCPU and DCPMU in runoff were 93, 30 and 83-825 µg L^-1 respectively. Their total loading in all runoff was >0.6% of applied diuron. Diuron and DCPMU concentrations in stream sediments were between 3-22 and 4-31 µg kg^-1 soil respectively. The DCPMU/diuron sediment ratio was >1. CONCLUSION: Retention of diuron and its metabolites in farm topsoil indicated their negligible potential for groundwater contamination. Minimal amounts of diuron and DCMPU escaped in farm runoff. This may entail a significant loading into the wider environment at annual amounts of application. The concentrations and ratio of diuron and DCPMU in stream sediments indicated that they had prolonged residence times and potential for accumulation in sediments. The higher ecotoxicity of DCPMU compared with diuron and the combined presence of both compounds in stream sediments suggest that together they would have a greater impact on sensitive aquatic species than as currently apportioned by assessments that are based upon diuron alone.
Resumo:
Clonal forestry is the approach used for deployment of Pinus elliottii x P. caribaea hybrids in Queensland, Australia. Clonal forestry relies on the ability to maintain juvenility of stock plants while selections are made in field tests, so that genetic gains are not eroded by the effects of stock plant maturation. Two parallel approaches are employed in Queensland to maintain juvenility of clonal material. Firstly, the ortet and several ramets of each clone are maintained as archive hedges <20-cm height for the duration of field tests. Secondly, shoots from archive hedges are stored in tissue culture at low temperature and low irradiance to slow growth and slow maturation. Once the best clones have been identified, production hedges are derived from both archive hedges and tissue culture shoots. About 6 million rooted cuttings are produced annually, representing almost the entire planting program of Pinus in subtropical Queensland.
Resumo:
There are two major pests of sorghum in Australia, the sorghum midge, Stenodiplosis sorghicola (Coquillett), and the corn earworm, Helicoverpa armigera (Hübner). During the past 10 years the management of these pests has undergone a revolution, due principally to the development of sorghum hybrids with resistance to sorghum midge. Also contributing has been the adoption of a nucleopolyhedrovirus for the management of corn earworm. The practical application of these developments has led to a massive reduction in the use of synthetic insecticides for the management of major pests of sorghum in Australia. These changes have produced immediate economic, environmental and social benefits. Other flow-on benefits include providing flexibility in planting times, the maintenance of beneficial arthropods and utilisation of sorghum as a beneficial arthropod nursery, a reduction in midge populations and a reduction in insecticide resistance development in corn earworm. Future developments in sorghum pest management are discussed.
Resumo:
An integrated pest management (IPM) approach that relies on an array of tactics is adopted commonly in response to problems with pesticide-based production in many agricultural systems. Host plant resistance is often used as a fundamental component of an IPM system because of the generally compatible, complementary role that pest-resistant crops play with other tactics. Recent research and development in the resistance of legumes and cereals to aphids, sorghum midge resistance, and the resistance of canola varieties to mite and insect pests have shown the prospects of host plant resistance for developing IPM strategies against invertebrate pests in Australian grain crops. Furthermore, continuing advances in biotechnology provide the opportunity of using transgenic plants to enhance host plant resistance in grains.
Resumo:
Isolates of Claviceps africana from Australia, Africa, Asia, and America were tested for the production of dihydroergosine (DHES), and its biogenic precursors dihydroelymoclavine (DHEL) and festuclavine (FEST), in culture. Several growth media were evaluated to optimise alkaloid production with little success. The best of these involved 2-stage culturing on high-sucrose substrate. Australian C. africana isolates varied widely and inconsistently in alkaloid production, with DHES concentrations in mycelium ranging from: <0.1 to 9 mg DHES/kg; <0.1 to 1.6 mg DHEL/kg; and <0.1 to 0.4 mg FEST/kg. In a separate experiment using similar culturing techniques, DHES was produced by 2 of 3 Australian isolates, 1 of 3 USA isolates, 1 of 4 Indian isolates, the sole Puerto Rican isolate, the sole Japanese isolate, but not the sole South African isolate. In this experiment, DHES concentrations detected in mycelium of Australian isolates (0.1-1.0 mg DHES/kg) were of similar magnitude to isolates from other countries (0.2-1.8 mg DHES/kg). Three C. africana isolates, including one that produced only traces of alkaloid in culture after 8 weeks, were inoculated onto panicles of sterile male sorghum plants. After 8 weeks, all 3 isolates produced 10-19 mg DHES/kg in the panicles, demonstrating that the growing plant favoured more consistent alkaloid production than culture medium.