95 resultados para Leaf structure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prickly acacia (Vachellia nilotica subsp. indica), a native multipurpose tree in India, is a weed of National significance, and a target for biological control in Australia. Based on plant genetic and climatic similarities, native range surveys for identifying potential biological control agents for prickly acacia were conducted in India during 2008-2011. In the survey leaf-feeding geometrid, Isturgia disputaria Guenee (syn. Tephrina pulinda), widespread in Tamil Nadu and Karnataka States, was prioritized as a potential biological control agent based on field host range, damage potential and no choice test on non target plant species. Though the field host range study exhibited that V. nilotica ssp. indica and V. nilotica ssp. tomentosa were the primary hosts for successful development of the insect, I. disputaria, replicated no - choice larval feeding and development tests conducted on cut foliage and live plants of nine non-target acacia test plant species in India revealed the larval feeding and development on three of the nine non-target acacia species, V. tortilis, V. planiferons and V. leucophloea in addition to the V. nilotica ssp. indica and V. nilotica ssp. tomentosa. However, the proportion of larvae developing into adults was higher on V. nilotica subsp. indica and V. nilotica subsp. tomentosa, with 90% and 80% of the larvae completing development, respectively. In contrast, the larval mortality was higher on V. tortilis (70%), V. leucophloea (90%) and V. planiferons (70%). The no-choice test results support the earlier host specificity test results of I. disputaria from Pakistan, Kenya and under quarantine in Australia. Contrasting results between field host range and host use pattern under no-choice conditions are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Australian lungfish is a unique living representative of an ancient dipnoan lineage, listed as ‘vulnerable’ to extinction under Australia’s Environment Protection and Biodiversity Conservation Act 1999. Historical accounts indicate this species occurred naturally in two adjacent river systems in Australia, the Burnett and Mary. Current day populations in other rivers are thought to have arisen by translocation from these source populations. Early genetic work detected very little variation and so had limited power to answer questions relevant for management including how genetic variation is partitioned within and among sub-populations. In this study, we use newly developed microsatellite markers to examine samples from the Burnett and Mary Rivers, as well as from two populations thought to be of translocated origin, Brisbane and North Pine. We test whether there is significant genetic structure among and within river drainages; assign putatively translocated populations to potential source populations; and estimate effective population sizes. Eleven polymorphic microsatellite loci genotyped in 218 individuals gave an average within-population heterozygosity of 0.39 which is low relative to other threatened taxa and for freshwater fishes in general. Based on FST values (average over loci = 0.11) and STRUCTURE analyses, we identify three distinct populations in the natural range, one in the Burnett and two distinct populations in the Mary. These analyses also support the hypothesis that the Mary River is the likely source of translocated populations in the Brisbane and North Pine rivers, which agrees with historical published records of a translocation event giving rise to these populations. We were unable to obtain bounded estimates of effective population size, as we have too few genotype combinations, although point estimates were low, ranging from 29 - 129. We recommend that, in order to preserve any local adaptation in the three distinct populations that they be managed separately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Host specificity tests on Gynaikothrips ficorum (Marchal) and Gynaikothrips uzeli (Zimmerman) (Thysanoptera: Phlaeothripidae) have shown that under experimental conditions, G. ficorum will induce leaf galls on both Ficus benjamina L. and Ficus microcarpa L. f. (Rosales: Moraceae), but G. uzeli will induce galls only on F. benjamina. A further interesting aspect of the results is that gall induction by G. uzeli on F. benjamina appears to have been suppressed in the presence of F. microcarpa plants in the same cage. Liothrips takahashii (Moulton) (Thysanoptera: Phlaeothripidae), an inquiline in the galls of these Gynaikothrips, is reported for the first time from Australia, mainland China, Malaysia, Costa Rica, and western USA.