97 resultados para strong-field
Resumo:
A comparative analysis of transgenic pineapple lines transformed with a polyphenol oxidase (PPO) gene (ppo) and the untransformed cultivar ‘Smooth Cayenne’ was made from plants grown in a series of field trials under cool subtropical conditions in southeast Queensland. In the four field trials where blackheart was recorded, all of the control lines expressed blackheart on each occasion and exhibited the greatest incidence (50%) and severity (34%) of symptoms. Irrespective of the gene transfer method or the gene construct used, 38% of the lines produced were regarded as blackheart resistant, having no blackheart symptoms in two or more trials. Five blackheart resistant transgenic lines consistently performed as well as or better than control plants in terms of fruit characteristics and quality.
Resumo:
This guide has been produced to assist Australian avocado growers and others involved in the avocado supply chain to identify the wide range of pests, diseases, nutrient deficiencies and toxicitites, and other disorders that may affect orchards and the quality of fruit reaching the consumer
Resumo:
Long-fallow disorder is expressed as exacerbated deficiencies of phosphorus (P) and/or zinc (Zn) in field crops growing after long periods of weed-free fallow. The hypothesis that arbuscular-mycorrhizal fungi (AMF) improve the P and Zn nutrition, and thereby biomass production and seed yield of linseed (Linum usitatissimum) was tested in a field experiment. A factorial combination of treatments consisting of +/- fumigation, +/- AMF inoculation with Glomus spp., +/- P and +/- Zn fertilisers was used on a long-fallowed vertisol. The use of such methods allowed an absolute comparison of plants growing with and without AMF in the field for the first time in a soil disposed to long-fallow disorder. Plant biomass, height, P and Zn concentrations and contents, boll number and final seed yield were (a) least in fumigated soil with negligible AMF colonisation of the roots, (b) low initially in long-fallow soil but increased with time as AMF colonisation of the roots developed, and (c) greatest in soil inoculated with AMF cultures. The results showed for the first time in the field that inflows of both P and Zn into linseed roots were highly dependent on %AMF-colonisation (R-2 = 0.95 for P and 0.85 for Zn, P < 0.001) in a soil disposed to long-fallow disorder. Relative field mycorrhizal dependencies without and with P+Zn fertiliser were 85 % and 86 % for biomass and 68 % and 52 % for seed yield respectively. This research showed in the field that AMF greatly improved the P and Zn nutrition, biomass production and seed yield of linseed growing in a soil disposed to long-fallow disorder. The level of mycorrhizal colonisation of plants suffering from long-fallow disorder can increase during the growing season resulting in improved plant growth and residual AMF inoculum in the soil, and thus it is important for growers to recognise the cause and not terminate a poor crop prematurely in order to sow another. Other positive management options to reduce long fallows and foster AMF include adoption of conservation tillage and opportunity cropping.
Resumo:
Bactrocera cucumis (French 1907), the ‘cucumber fruit fly’, is a horticultural pest in Australia that primarily infests cucurbits and has also been recorded from tomatoes, papaw and several other hosts. It does not respond to known male lures, cue-lure and methyl eugenol, making monitoring and control difficult. A cucumber volatile blend lure was recently developed in Hawaii and found to be an effective female-biased attractant for the melon fly B. cucurbitae. This lure was field tested in north Queensland, Australia in McPhail traps in comparison with orange ammonia, Cera Trap® and a control, and was found to more consistently trap B. cucumis than the other lures. B. cucumis were caught at 41% of the cucumber volatile lure trap clearances, compared with 27% of the orange ammonia, 18% of the Cera Trap and 16% of the control trap clearances. The cucumber volatile lure was more attractive to B. cucumis in low population densities and also trapped B. cucumis earlier on average than the other lures. Data analysed from the site with highest trap catches (Spring Creek) showed that the cucumber volatile lure caught significantly more B. cucumis than the other traps in four of the 11 trap clearance periods, and for the remaining clearances, no other trap type caught significantly more flies than the cucumber volatile lure. The cucumber volatile lure had a strong female-biased attraction but it was not significantly more female-biased than orange ammonia or Cera Trap. Cucumber volatile lure traps were cleaner to service resulting in better quality specimens than the orange ammonia trap or Cera Trap. These findings have potential implications for market access monitoring for determining pest freedom, and for biosecurity monitoring programmes in other countries that wish to detect B. cucumis early.
Resumo:
Q fever is a vaccine-preventable disease; despite this, high annual notification numbers are still recorded in Australia. We have previously shown seroprevalence in Queensland metropolitan regions is approaching that of rural areas. This study investigated the presence of nucleic acid from Coxiella burnetii, the agent responsible for Q fever, in a number of animal and environmental samples collected throughout Queensland, to identify potential sources of human infection. Samples were collected from 129 geographical locations and included urine, faeces and whole blood from 22 different animal species; 45 ticks were removed from two species, canines and possums; 151 soil samples; 72 atmospheric dust samples collected from two locations and 50 dust swabs collected from domestic vacuum cleaners. PCR testing was performed targeting the IS1111 and COM1 genes for the specific detection of C.burnetii DNA. There were 85 detections from 1318 animal samples, giving a detection rate for each sample type ranging from 2.1 to 6.8%. Equine samples produced a detection rate of 11.9%, whilst feline and canine samples showed detection rates of 7.8% and 5.2%, respectively. Native animals had varying detection rates: pooled urines from flying foxes had 7.8%, whilst koalas had 5.1%, and 6.7% of ticks screened were positive. The soil and dust samples showed the presence of C.burnetii DNA ranging from 2.0 to 6.9%, respectively. These data show that specimens from a variety of animal species and the general environment provide a number of potential sources for C.burnetii infections of humans living in Queensland. These previously unrecognized sources may account for the high seroprevalence rates seen in putative low-risk communities, including Q fever patients with no direct animal contact and those subjects living in a low-risk urban environment.
Resumo:
Graminicolous Downy Mildew (GDM) diseases caused by the genera Peronosclerospora (13 spp.) and Sclerophthora (6 spp. and 1 variety) are poorly studied but destructive diseases of major crops such as corn, sorghum, sugarcane and other graminoids. Eight of the 13 described Peronosclerospora spp. are able to infect corn. In particular, P. philippinensis (= P. sacchari), P. maydis, P. heteropogonis, and S. rayssiae var. zeae cause major losses in corn yields in tropical Asia. In 2012 a new species, P. australiensis, was described based on isolates previously identified as P. maydis in Australia; this species is now a pathogen of major concern. Despite the strong impact of GDM diseases, there are presently no reliable molecular methods available for their detection. GDM pathogens are among the most difficult Oomycetes to identify using molecular tools, as their taxonomy is very challenging, and little genetic sequence data are available for development of molecular tools to detect GDM pathogens to species level. For example, from over 15 genes used in identification, diagnostics or phylogeny of Phytophthora, only ITS1 and cox2 show promise for use with GDM pathogens. Multiplex/multigene conventional and qPCR assays are currently under evaluation for the detection of economically important GDM spp. Scientists from the USA, Germany, Canada, Australia, and the Philippines are collaborating on the development and testing of diagnostic tools for these pathogens of concern.
Resumo:
We developed a suitable diet for mass rearing of Cryptolestes ferrugineus (Stephens) populations under laboratory conditions. Recently, this pest has developed strong level of resistance to phosphine in Australia, and therefore, a significant amount of research has been directed towards its management. In total, nineteen grain-based diets, containing rolled oats, various combinations of cracked grains and flours of wheat, sorghum, maize and barley were tested. Each diet contained a small proportion of wheat germ (4.5% w/w) and torula yeast (0.5% w/w). Experiments were conducted at fixed temperature and relative humidity regimes of 30 ± 2 °C and 70 ± 2%, respectively, and replicated three times. Adults (n = 40) of a laboratory strain of C. ferrugineus were introduced into each diet, removed after 14 days and total numbers of live adult progeny were recorded. The following diets resulted in highest live progeny production: barley flour (95%) (607.67 ± 11.21) = rolled oats (75%) + cracked sorghum (20%) (597.33 ± 33.79) ≥ wheat flour (47.5%) + barley flour (47.5%) (496.67 ± 52.93) > cracked sorghum (95%) (384.00 ± 60.66). The performance of these four diets was then tested with field-collected populations of C. ferrugineus and Cryptolestes pusillus (Schonherr). The diets based on rolled oats + cracked sorghum, wheat flour + barley flour, and barley flour alone consistently produced highest progeny numbers in field-collected populations of both species, with mean progeny numbers ranging from 359.9 to 478.5. The multiplication of C. pusillus was significantly higher than C. ferrugineus on all four diets. Our findings will help in mass rearing of healthy cultures of C. ferrugineus and C. pusillus that will greatly facilitate laboratory and field research and in particular, in developing management tactics for these species.
Resumo:
Dry seeding of aman rice can facilitate timely crop establishment and early harvest and thus help to alleviate the monga (hunger) period in the High Ganges Flood Plain of Bangladesh. Dry seeding also offers many other potential benefits, including reduced cost of crop establishment and improved soil structure for crops grown in rotation with rice. However, the optimum time for seeding in areas where farmers have access to water for supplementary irrigation has not been determined. We hypothesized that earlier sowing is safer, and that increasing seed rate mitigates the adverse effects of significant rain after sowing on establishment and crop performance. To test these hypotheses, we analyzed long term rainfall data, and conducted field experiments on the effects of sowing date (target dates of 25 May, 10 June, 25 June, and 10 July) and seed rate (20, 40, and 60 kg ha−1) on crop establishment, growth, and yield of dry seeded Binadhan-7 (short duration, 110–120 d) during the 2012 and 2013 rainy seasons. Wet soil as a result of untimely rainfall usually prevented sowing on the last two target dates in both years, but not on the first two dates. Rainfall analysis also suggested a high probability of being able to dry seed in late May/early June, and a low probability of being able to dry seed in late June/early July. Delaying sowing from 25 May/10 June to late June/early July usually resulted in 20–25% lower plant density and lower uniformity of the plant stand as a result of rain shortly after sowing. Delaying sowing also reduced crop duration, and tillering or biomass production when using a low seed rate. For the late June/early July sowings, there was a strong positive relationship between plant density and yield, but this was not the case for earlier sowings. Thus, increasing seed rate compensated for the adverse effect of untimely rains after sowing on plant density and the shorter growth duration of the late sown crops. The results indicate that in this region, the optimum date for sowing dry seeded rice is late May to early June with a seed rate of 40 kg ha−1. Planting can be delayed to late June/early July with no yield loss using a seed rate of 60 kg ha−1, but in many years, the soil is simply too wet to be able to dry seed at this time due to rainfall.
Resumo:
Key message: QTLidentified for seedling and adult plant crown rot resistance in four partially resistant hexaploid wheat sources. PCR-based markers identified for use in marker-assisted selection. Abstract: Crown rot, caused by Fusarium pseudograminearum, is an important disease of wheat in many wheat-growing regions globally. Complete resistance to infection by F. pseudograminearum has not been observed in a wheat host, but germplasm with partial resistance to this pathogen has been identified. The partially resistant wheat hexaploid germplasm sources 2-49, Sunco, IRN497 and CPI133817 were investigated in both seedling and adult plant field trials to identify markers associated with the resistance which could be used in marker-assisted selection programs. Thirteen different quantitative trait loci (QTL) conditioning crown rot resistance were identified in the four different sources. Some QTL were only observed in seedling trials whereas others appeared to be adult plant specific. For example while the QTL on chromosomes 1AS, 1BS, and 4BS contributed by 2-49 and on 2BS contributed by Sunco were detected in both seedling and field trials, the QTL on 1DL present in 2-49 and the QTL on 3BL in IRN497 were only detected in seedling trials. Genetic correlations between field trials of the same population were strong, as were correlations between seedling trials of the same population. Low to moderate correlations were observed between seedling and field trials. Flanking markers, most of which are less than 10 cM apart, have now been identified for each of the regions associated with crown rot resistance.
Resumo:
Results from the first of two artificially inoculated field experiments showed foliar applications of copper hydroxide (Blue Shield Copper) at 600 g a.i./100 L−1 (0% infected fruit), copper hydroxide + metalaxyl-M (Ridomil Gold Plus.) at 877.5 g a.i./100 L−1 (0.27%), metiram + pyraclostrobin (Aero) at 720 g a.i./100 L−1 (0.51%), chlorothalonil (Bravo WeatherStik) at 994 g a.i./100 L−1 (0.63%) and cuprous oxide (Nordox 750 WG) at 990 g a.i./100 L−1 (0.8%) of water significantly reduced the percentage of infected fruit compared to potassium phosphonate (Agri-Fos 600) at 1200 g a.i./100 L−1 (8.22%), dimethomorph (Acrobat) at 108 g a.i./100 L−1 (11.18%) and the untreated control (16%). Results from the second experiment showed fruit sprayed with copper hydroxide (Champ Dry Prill) at 300 (2.0% infected fruit), 375 (0.4%) and 450 g a.i./100 L−1 (0.6%) and metiram + pyraclostrobin (Aero) at 360 (2.8%), 480 (0.6%) and 600 g a.i./100 L−1 of water (1.0%) significantly reduced the percentage of infected fruit compared to the untreated control (19.4%). Foliar sprays of copper hydroxide at 375 g a.i./100 L−1 in rotation with chlorothalonil at 994 g a.i./100 L−1 every two weeks is now recommended to growers for controlling Phytophthora fruit rot of papaya.
Resumo:
A disease outbreak investigation was conducted in western Queensland to investigate a rare suspected outbreak of pyrrolizidine alkaloid (PA) toxicosis in horses. Thirty five of 132 horses depastured on five properties on the Mitchell grass plains of western Queensland died in the first six months of 2010. Clinical–pathological findings were consistent with PA toxicosis. A local variety of Crotalaria medicaginea was the only hepatotoxic plant found growing on affected properties. Pathology reports and departure and arrival dates of two brood mares provided evidence of a pre wet season exposure period. All five affected properties experienced a very dry spring and early summer preceded by a large summer wet season. The outbreak was characterised as a point epidemic with a sudden peak of deaths in March followed by mortalities steadily declining until the end of June. The estimated morbidity (serum IGG > 50 IU/L) rate was 76%. Average crude mortality was 27% but higher in young horses (67%) and brood mares (44%). Logistic regression analysis showed that young horses and brood mares and those grazing denuded pastures in December were most strongly associated with dying whereas those fed hay and/or grain based supplements were less likely to die. This is the first detailed study of an outbreak of PA toxicosis in central western Queensland and the first to provide evidence that environmental determinants were associated with mortality, that the critical exposure period was towards the end of the dry season, that supplementary feeding is protective and that denuded pastures and the horses physiological protein requirement are risk factors.
Resumo:
Sitophilus oryzae (Linnaeus) is a major pest of stored grain across Southeast Asia and is of increasing concern in other regions due to the advent of strong resistance to phosphine, the fumigant used to protect stored grain from pest insects. We investigated the inheritance of genes controlling resistance to phosphine in a strongly resistant S. oryzae strain (NNSO7525) collected in Australia and find that the trait is autosomally inherited and incompletely recessive with a degree of dominance of -0.66. The strongly resistant strain has an LC50 52 times greater than a susceptible reference strain (LS2) and 9 times greater than a weakly resistant strain (QSO335). Analysis of F2 and backcross progeny indicates that two or more genes are responsible for strong resistance, and that one of these genes, designated Sorph1, not only contributes to strong resistance, but is also responsible for the weak resistance phenotype of strain QSO335. These results demonstrate that the genetic mechanism of phosphine resistance in Soryzae is similar to that of other stored product insect pests. A unique observation is that a subset of the progeny of an F1 backcross generation are more strongly resistant to phosphine than the parental strongly resistant strain, which may be caused by multiple alleles of one of the resistance genes.
Resumo:
Development of no-tillage (NT) farming has revolutionized agricultural systems by allowing growers to manage greater areas of land with reduced energy, labour and machinery inputs to control erosion, improve soil health and reduce greenhouse gas emission. However, NT farming systems have resulted in a build-up of herbicide-resistant weeds, an increased incidence of soil- and stubble-borne diseases and enrichment of nutrients and carbon near the soil surface. Consequently, there is an increased interest in the use of an occasional tillage (termed strategic tillage, ST) to address such emerging constraints in otherwise-NT farming systems. Decisions around ST uses will depend upon the specific issues present on the individual field or farm, and profitability and effectiveness of available options for management. This paper explores some of the issues with the implementation of ST in NT farming systems. The impact of contrasting soil properties, the timing of the tillage and the prevailing climate exert a strong influence on the success of ST. Decisions around timing of tillage are very complex and depend on the interactions between soil water content and the purpose for which the ST is intended. The soil needs to be at the right water content before executing any tillage, while the objective of the ST will influence the frequency and type of tillage implement used. The use of ST in long-term NT systems will depend on factors associated with system costs and profitability, soil health and environmental impacts. For many farmers maintaining farm profitability is a priority, so economic considerations are likely to be a primary factor dictating adoption. However, impacts on soil health and environment, especially the risk of erosion and the loss of soil carbon, will also influence a grower’s choice to adopt ST, as will the impact on soil moisture reserves in rainfed cropping systems.
Resumo:
Pregnancy rates (PR) to fixed-time AI (FTAI) in Brahman heifers were compared after treatment with a traditional oestradiol-based protocol (OPO-8) or a modified protocol (OPO-6) where the duration of intravaginal progesterone releasing device (IPRD) was reduced from 8 to 6 days, and the interval from IPRD removal to oestradiol benzoate (ODB) was increased from 24 to 36 h. Rising 2 yo heifers on Farm A: (n = 238 and n = 215; two consecutive days AI); B (n = 271); and C (n = 393) were allocated to OPO-8 or OPO-6. An IPRD was inserted and 1 mg ODB i.m. on Day 0 for OPO-8 heifers and Day 2 for OPO-6 heifers. On Day 8, the IPRD was removed and 500 μg cloprostenol i.m. At 24 h, for OPO-8 heifers, and 36 h, for OPO-6 heifers, post IPRD removal all heifers received 1 mg ODB i.m. FTAI was conducted at 54 and 72 h post IPRD removal for OPO-8 and OPO-6 heifers. At Farm A, OPO-6 heifers, AI on the second day, the PR was 52.4 to FTAI (P = 0.024) compared to 36.8 for OPO-8 heifers. However, no differences were found between OPO-8 and OPO-6 protocols at Farm A (first day of AI) (39.9 vs. 35.7), or Farms B (26.2 vs. 35.4) and C (43.2 vs. 40.3). Presence of a corpus luteum at IPRD insertion affected PR to FTAI (43.9 vs. 28.8; P < 0.001). This study has shown that the modified ovulation synchronisation protocol OPO-6 may be a viable alternative to the OPO-8 protocol for FTAI in B. indicus heifers.